相關(guān)習(xí)題
 0  261674  261682  261688  261692  261698  261700  261704  261710  261712  261718  261724  261728  261730  261734  261740  261742  261748  261752  261754  261758  261760  261764  261766  261768  261769  261770  261772  261773  261774  261776  261778  261782  261784  261788  261790  261794  261800  261802  261808  261812  261814  261818  261824  261830  261832  261838  261842  261844  261850  261854  261860  261868  266669 

科目: 來源: 題型:

【題目】“珠算之父”程大為是我國明代偉大數(shù)學(xué)家,他的應(yīng)用數(shù)學(xué)巨著《算法統(tǒng)綜》的問世,標志著我國的算法由籌算到珠算轉(zhuǎn)變的完成,程大位在《算法統(tǒng)綜》中常以詩歌的形式呈現(xiàn)數(shù)學(xué)問題,其中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明”((注)三升九:升,次第盛;盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識求得中間兩節(jié)的容積為( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項和滿足,,

1)求數(shù)列{}{}的通項公式:

2)設(shè)為數(shù)列{}的前項和,求

查看答案和解析>>

科目: 來源: 題型:

【題目】石嘴山市第三中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績,現(xiàn)有甲、乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:

(1)根據(jù)莖葉圖求甲、乙兩位同學(xué)成績的中位數(shù),并將同學(xué)乙的成績的頻率分布直方圖填充完整;

(2)現(xiàn)從甲、乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 的中點。

1)證明: 平面;

2)設(shè) ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,分別是橢圓的左、右焦點.

(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標;

(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,,

(I)證明:平面平面;

(II)若 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】給定點,若是直線上位于第一象限內(nèi)的一點,直線軸的正半軸相交于點.試探究:的面積是否具有最小值?若有,求出點的坐標;若沒有,則說明理由.若點為直線上的任意一點,情況又會怎樣呢?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四棱錐的底面為等腰梯形, , ,垂足為, 是四棱錐的高。

)證明:平面 平面

)若,60°,求四棱錐的體積。

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,正方體ABCDA1B1C1D1棱長為4,點在棱上,點在棱上,且.在側(cè)面內(nèi)以為一個頂點作邊長為1的正方形,側(cè)面內(nèi)動點滿足到平面距離等于線段長的倍,則當點運動時,三棱錐的體積的最小值是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解男性家長和女性家長對高中學(xué)生成人禮儀式的接受程度,某中學(xué)團委以問卷形式調(diào)查了位家長,得到如下統(tǒng)計表:

男性家長

女性家長

合計

贊成

無所謂

合計

(1)據(jù)此樣本,能否有的把握認為“接受程度”與家長性別有關(guān)?說明理由;

(2)學(xué)校決定從男性家長中按分層抽樣方法選出人參加今年的高中學(xué)生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..

參考數(shù)據(jù)

參考公式

查看答案和解析>>

同步練習(xí)冊答案