相關習題
 0  262018  262026  262032  262036  262042  262044  262048  262054  262056  262062  262068  262072  262074  262078  262084  262086  262092  262096  262098  262102  262104  262108  262110  262112  262113  262114  262116  262117  262118  262120  262122  262126  262128  262132  262134  262138  262144  262146  262152  262156  262158  262162  262168  262174  262176  262182  262186  262188  262194  262198  262204  262212  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

(1)當時,求處切線方程;

(2)討論的單調區(qū)間;

(3)試判斷的實根個數(shù)說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列說法不正確的個數(shù)有( )

甲、乙兩學生參與某考試,設命題:甲考試及格, :乙考試及格,則命題“至少有一位學生不及格”可表示為.命題“對,都有”的否定為“,使得”.“若,則”是假命題.④“”是“”的必要不充分條件.⑤函數(shù)是偶函數(shù)

A. 0個 B. 1個 C. 2個 D. 3個

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的最小值;

(2)討論在區(qū)間上的極值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論的導函數(shù)的零點個數(shù);

(2)當時,證明: .

查看答案和解析>>

科目: 來源: 題型:

【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):

經計算: , , , , ,其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù), .

(1)若用線性回歸模型,求關于的回歸方程(結果精確到);

(2)若用非線性回歸模型求得關于的回歸方程為,且相關指數(shù)為.

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預測溫度為時該批紫甘薯死亡株數(shù)(結果取整數(shù)).

附:對于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘估計分別為: ;相關指數(shù)為: .

查看答案和解析>>

科目: 來源: 題型:

【題目】為調查乘客的候車情況,公交公司在某站臺的60名候車乘客中隨機抽取15人,將他們的候車時間(單位:分鐘)作為樣本分成5組,如表所示:

組別

候車時間

人數(shù)

2

6

4

2

1

(1)估計這60名乘客中候車時間少于10分鐘的人數(shù);

(2)若從上表第三、四組的6人中隨機抽取2人作進一步的問卷調查,求抽到的兩人恰好來自同一組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調性;

(2)若,求證: .

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知曲線和曲線交于兩點之間),且,求實數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】分別為函數(shù)的導函數(shù).若存在,滿足,則稱為函數(shù)的一個“S點”

(1)證明:函數(shù)不存在“S點”;

(2)若函數(shù)存在“S點”,求實數(shù)a的值;

(3)已知函數(shù),.對任意,判斷是否存在,使函數(shù)在區(qū)間內存在“S點”,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足 為數(shù)列的前項和,且,則__________

查看答案和解析>>

同步練習冊答案