科目: 來源: 題型:
【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對“延遲退休”的態(tài)度,現(xiàn)從某地市民中隨機選取100人進行調(diào)查,調(diào)查情況如下表:
年齡段(單位:歲) | ||||||
被調(diào)查的人數(shù) | ||||||
贊成的人數(shù) |
(1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為,求出表格中的值;
(2)若從年齡在的參與調(diào)查的市民中按照是否贊成“延遲退休”進行分層抽樣,從中抽取10人參與某項調(diào)查,然后再從這10人中隨機抽取4人參加座談會,記這4人中贊成“延遲退休”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校2011年到2019年參加“北約”“華約”考試而獲得加分的學(xué)生人數(shù)(每位學(xué)生只能參加“北約”“華約”中的一種考試)可以通過以下表格反映出來.(為了方便計算,將2011年編號為1,2012年編號為2,依此類推)
年份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
人數(shù)y | 2 | 3 | 5 | 4 | 5 | 7 | 8 | 10 | 10 |
(1)求這九年來,該校參加“北約”“華約”考試而獲得加分的學(xué)生人數(shù)的平均數(shù)和方差;
(2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出y與x的線性回歸方程,并依此預(yù)測該校2020年參加“北約”“華約”考試而獲得加分的學(xué)生人數(shù).(最終結(jié)果精確至個位)
參考數(shù)據(jù):回歸直線的方程是,其中,.,.
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)生學(xué)習(xí)的自律性很重要.某學(xué)校對自律性與學(xué)生成績是否有關(guān)進行了調(diào)研,從該校學(xué)生中隨機抽取了100名學(xué)生,通過調(diào)查統(tǒng)計得到列聯(lián)表的部分數(shù)據(jù)如下表:
自律性一般 | 自律性強 | 合計 | |
成績優(yōu)秀 | 40 | ||
成績一般 | 20 | ||
合計 | 50 | 100 |
(1)補全列聯(lián)表中的數(shù)據(jù);
(2)判斷是否有的把握認為學(xué)生的自律性與學(xué)生成績有關(guān).
參考公式及數(shù)據(jù):.
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】用n種不同的顏色為下列兩塊廣告牌著色,(如圖甲、乙),要求在A,B,C,D四個區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一顏色.
(1)若n=6,則為甲圖著色時共有多少種不同的方法;
(2)若為乙圖著色時共有120種不同方法,求n.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市氣象部門根據(jù)2018年各月的每天最高氣溫平均值與最低氣溫平均值(單位:)數(shù)據(jù),繪制如下折線圖:
那么,下列敘述錯誤的是( )
A. 各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)
B. 全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大
C. 全年中各月最低氣溫平均值不高于的月份有5個
D. 從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢
查看答案和解析>>
科目: 來源: 題型:
【題目】若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)與函數(shù),為“同族函數(shù)”.下面函數(shù)解析式中能夠被用來構(gòu)造“同族函數(shù)”的是( )
A.B.C.
D.E.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為=(>0),過點的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為.如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù),其中b為實數(shù).
①求證:函數(shù)f(x)具有性質(zhì)P(a).②求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2.設(shè)m為實數(shù), ,且.若,求實數(shù)m的取值范圍
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當時,恒成立,求整數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com