相關習題
 0  263335  263343  263349  263353  263359  263361  263365  263371  263373  263379  263385  263389  263391  263395  263401  263403  263409  263413  263415  263419  263421  263425  263427  263429  263430  263431  263433  263434  263435  263437  263439  263443  263445  263449  263451  263455  263461  263463  263469  263473  263475  263479  263485  263491  263493  263499  263503  263505  263511  263515  263521  263529  266669 

科目: 來源: 題型:

【題目】已知函數(shù),且曲線在點處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時,.

查看答案和解析>>

科目: 來源: 題型:

【題目】設n為一個正整數(shù),三維空間內(nèi)的點集S滿足下述性質(zhì):

(1).空間內(nèi)不存在n個平面,使得點集S中的每個點至少在這n個平面中的一個平面上;

(2).對于每個點,均存在n個平面,使得中的每個點均至少在這n個平面中的一個平面上.

求點集S中點的個數(shù)的最小值與最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】集合,對于正整數(shù)m,集合S的任一m元子集中必有一個數(shù)為另外m-1個數(shù)乘積的約數(shù).則m的最小可能值為__________。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為,過其右焦點F的直線交橢圓CM,N兩點,交y軸于E點.若,

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在平面直角坐標系中,直線為參數(shù)),以原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程及曲線的直角坐標方程;

(2)設點直角坐標為,直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù), 為常數(shù)),函數(shù)為自然對數(shù)的底).

(1)討論函數(shù)的極值點的個數(shù);

(2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在邊長為的菱形中,交于點,將沿直線折起到的位置(點不與兩點重合).

(1)求證:不論折起到何位置,都有平面;

(2)當平面時,點是線段上的一個動點,若與平面所成的角為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,為等腰直角三角形,,四邊形為直角梯形,,,,

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】 2022年北京冬奧會的申辦成功與“3億人上冰雪口號的提出,將冰雪這個冷項目迅速炒.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣.

(1)完成下面的列聯(lián)表,并回答能否在犯錯誤的概率不超過0.1的前提下認為對冰球是否有興趣與性別有關”?

有興趣

沒興趣

合計

55

合計

(2)若將頻率視為概率,現(xiàn)再從該校一年級全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰球有興趣的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.

附表:

0.150

0.100

0.050

0.025

0.010

2.072/p>

2.706

3.841

5.024

6.635

參考公式:

查看答案和解析>>

科目: 來源: 題型:

【題目】某班制定了數(shù)學學習方案:星期一和星期日分別解決個數(shù)學問題,且從星期二開始,每天所解決問題的個數(shù)與前一天相比,要么“多一個”要么“持平”要么“少一個”,則在一周中每天所解決問題個數(shù)的不同方案共有( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案