相關(guān)習(xí)題
 0  263450  263458  263464  263468  263474  263476  263480  263486  263488  263494  263500  263504  263506  263510  263516  263518  263524  263528  263530  263534  263536  263540  263542  263544  263545  263546  263548  263549  263550  263552  263554  263558  263560  263564  263566  263570  263576  263578  263584  263588  263590  263594  263600  263606  263608  263614  263618  263620  263626  263630  263636  263644  266669 

科目: 來源: 題型:

【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點O為圓心的圓O與圓M相切.

1)求圓O的方程;

2)圓Ox軸交于E,F兩點,圓O內(nèi)的動點D使得DE,DO,DF成等比數(shù)列,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,內(nèi)角AB、C的對邊分別為a、b、c,且滿足b2=ac,cosB=

1)求+的值;

2)設(shè)=,求三邊a、b、c的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,D,E分別為BCAC的中點,AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

查看答案和解析>>

科目: 來源: 題型:

【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.

(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計公式分別為 ,

查看答案和解析>>

科目: 來源: 題型:

【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對任意的正整數(shù) ,都有 ;

④存在最大的正數(shù),使得對任意的正整數(shù),都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱中,平面邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知ab、cABC的三個內(nèi)角A、BC的對邊,向量=-1,),=cosA,sinA),若,且acosB+bcosA=csinC,則角B的大小為______

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案