科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),把曲線橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的一半,得到曲線,直線的普通方程是,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系;
(1)求直線的極坐標(biāo)方程和曲線的普通方程;
(2)記射線與交于點(diǎn),與交于點(diǎn),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是( )
A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力
B. 甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值
C. 乙的六維能力指標(biāo)值整體水平優(yōu)于甲的六維能力指標(biāo)值整體水平
D. 甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照的比例進(jìn)行分層抽樣,統(tǒng)計結(jié)果按,,,,,分組,整理如下圖:
(1)求頻率分布直方圖(圖乙)中的值,并估計1200個日銷售量中,數(shù)據(jù)在區(qū)間中的個數(shù).
(2)從日銷售量在的甲種酸奶的數(shù)據(jù)樣本中抽取3個,記在內(nèi)的數(shù)據(jù)個數(shù)為,求的分布列.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,三角形為等邊三角形, ,且,是的中點(diǎn),是的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知復(fù)數(shù),其中為虛數(shù)單位,對于任意復(fù)數(shù),有,.
(1)求的值;
(2)若復(fù)數(shù)滿足,求的取值范圍;
(3)我們把上述關(guān)系式看作復(fù)平面上表示復(fù)數(shù)的點(diǎn)和表示復(fù)數(shù)的點(diǎn)之間的一個變換,問是否存在一條直線,若點(diǎn)在直線上,則點(diǎn)仍然在直線上?如果存在,求出直線的方程,否則,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點(diǎn)F為拋物線的焦點(diǎn),過點(diǎn)F的動直線l與拋物線C交于M,N兩點(diǎn),且當(dāng)直線l的傾斜角為時,.
(1)求拋物線C的方程.
(2)點(diǎn),證明:直線PM,PN關(guān)于x軸對稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com