科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當時,證明:函數(shù)有兩個零點;
(Ⅲ)若函數(shù)有兩個不同的極值點,記作,且,證明(為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左焦點在拋物線的準線上,且橢圓的短軸長為2,分別為橢圓的左,右焦點,分別為橢圓的左,右頂點,設(shè)點在第一象限,且軸,連接交橢圓于點,直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形的面積,求的值;
(Ⅲ)設(shè)點為的中點,射線(為原點)與橢圓交于點,滿足,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高中志愿者男志愿者5人,女志愿者3人,這些人要參加社區(qū)服務(wù)工作.從這些人中隨機抽取4人負責文明宣傳工作,另外4人負責衛(wèi)生服務(wù)工作.
(Ⅰ)設(shè)為事件;“負責文明宣傳工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件發(fā)生的概率;
(Ⅱ)設(shè)表示參加文明宣傳工作的女志愿者人數(shù),求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系內(nèi),動點到定點的距離與到定直線距離之比為.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)點是軌跡上兩個動點直線與軌跡的另一交點分別為且直線的斜率之積等于,問四邊形的面積是否為定值?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】由團中央學校部、全國學聯(lián)秘書處、中國青年報社共同舉辦的2018年度全國“最美中學生“尋訪活動結(jié)果出爐啦,此項活動于2018年6月啟動,面向全國中學在校學生,通過投票方式尋訪一批在熱愛祖國、勤奮學習、熱心助人、見義勇為等方面表現(xiàn)突出、自覺樹立和踐行社會主義核心價值觀的“最美中學生”.現(xiàn)隨機抽取了30名學生的票數(shù),線成如圖所示的莖葉圖,若規(guī)定票數(shù)在65票以上(包括65票)定義為風華組.票數(shù)在65票以下(不包括65票)的學生定義為青春組.
(Ⅰ)在這30名學生中,青春組學生中有男生7人,風華組學生中有女生12人,試問有沒有的把握認為票數(shù)分在青春組或風華組與性別有關(guān);
(Ⅱ)如果用分層抽樣的方法從青春組和風華組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在青春組的概率是多少?
(Ⅲ)用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數(shù)很多)中隨機選取4人,用表示所選4人中青春組的人數(shù),試寫出的分布列,并求出的數(shù)學期望.
附:;其中
獨立性檢驗臨界表:
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)的圖象上存在兩點,使得是以為直角頂點的直角三角形(其中為坐標原點),且斜邊的中點恰好在軸上,則實數(shù)的取值范圍是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示:勞倫茨曲線為直線時,表示收入完全平等,勞倫茨曲線為折線時,表示收入完全不平等記區(qū)域為不平等區(qū)域,表示其面積,為的面積.將,稱為基尼系數(shù).對于下列說法:
①越小,則國民分配越公平;
②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有;
③若某國家某年的勞倫茨曲線近似為,則;
④若某國家某年的勞倫茨曲線近似為,則.
其中不正確的是:( )
A.①④B.②③C.①③④D.①②④
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設(shè)與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.
(1)求的直角坐標方程與點的直角坐標;
(2)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com