科目: 來源: 題型:
【題目】設函數(shù)(a,);
(1)若,求證:函數(shù)的圖像必過定點;
(2)若,證明:在區(qū)間上的最大值;
(3)存在實數(shù)a,使得當時,恒成立,求實數(shù)b的最大值;
查看答案和解析>>
科目: 來源: 題型:
【題目】在下列命題中,正確的命題有________(填寫正確的序號)
①若,則的最小值是6;
②如果不等式的解集是,那么恒成立;
③設x,,且,則的最小值是;
④對于任意,恒成立,則t的取值范圍是;
⑤“”是“復數(shù)()是純虛數(shù)”的必要非充分條件;
⑥若,,,則必有;
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,是橢圓:上的點,過點的直線的方程為.
(1)求橢圓的離心率;
(2)當時,
(i)設直線與軸、軸分別相交于,兩點,求的最小值;
(ii)設橢圓的左、右焦點分別為,,點與點關于直線對稱,求證:點,,三點共線.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角梯形中,,,,直角梯形可以通過直角梯形以直線為軸旋轉得到,且平面平面.
(1)求證:;
(2)設、分別為、的中點,為線段上的點(不與點重合).
(i)若平面平面,求的長;
(ii)線段上是否存在,使得直線平面,若存在求的長,若不存在說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】A,B,C三個班共有100名學生,為調查他們的體育鍛煉情況,通過分層抽樣獲得了部分學生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時):
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(Ⅰ)試估計C班的學生人數(shù);
(Ⅱ)從A班和C班抽出的學生中,各隨機選取一人,A班選出的人記為甲,C班選出的人記為乙.假設所有學生的鍛煉時間相互獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;
(Ⅲ)再從A,B,C三個班中各隨機抽取一名學生,他們該周的鍛煉時間分別是7,9,8.25(單位:小時).這3個新數(shù)據(jù)與表格中的數(shù)據(jù)構成的新樣本的平均數(shù)記為,表格中數(shù)據(jù)的平均數(shù)記為,試判斷和的大小.(結論不要求證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓經(jīng)過點離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過橢圓左焦點的直線(不經(jīng)過點且不與軸重合)與橢圓交于兩點,與直線:交于點,記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,∥,,平面平面,且.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的大。
(Ⅲ)已知點在棱上,且異面直線與所成角的余弦值為,求線段的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從四所高校中選2所.
(Ⅰ)求甲、乙、丙三名同學都選高校的概率;
(Ⅱ)若已知甲同學特別喜歡高校,他必選校,另在三校中再隨機選1所;而同學乙和丙對四所高校沒有偏愛,因此他們每人在四所高校中隨機選2所.
(ⅰ)求甲同學選高校且乙、丙都未選高校的概率;
(ⅱ)記為甲、乙、丙三名同學中選校的人數(shù),求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com