科目: 來源: 題型:
【題目】已知函數(shù)f(x)=(1+x)t﹣1的定義域?yàn)椋ī?/span>1,+∞),其中實(shí)數(shù)t滿足t≠0且t≠1.直線l:y=g(x)是f(x)的圖象在x=0處的切線.
(1)求l的方程:y=g(x);
(2)若f(x)≥g(x)恒成立,試確定t的取值范圍;
(3)若a1,a2∈(0,1),求證: .注:當(dāng)α為實(shí)數(shù)時,有求導(dǎo)公式(xα)′=αxα﹣1.
查看答案和解析>>
科目: 來源: 題型:
【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計為:①對參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗(yàn)共進(jìn)行3個周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無關(guān).
(1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗(yàn),求一只小白鼠至多能參加一個接種周期試驗(yàn)的概率;
(2)若某只小白鼠在一個接種周期內(nèi)出現(xiàn)2次或3次癥狀,則在這個接種周期結(jié)束后,對其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy上取兩個定點(diǎn)A1(,0),A2(,0),再取兩個動點(diǎn)N1(0,m),N2(0,n),且mn=2.
(1)求直線A1N1與A2N2交點(diǎn)M的軌跡C的方程;
(2)過R(3,0)的直線與軌跡C交于P,Q,過P作PN⊥x軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若(λ>1),求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線E的左、右焦點(diǎn)分別為F1,F2,P是雙曲線E上的一點(diǎn),且|PF2|=2|PF1|,若直線PF2與雙曲線E的漸近線交于點(diǎn)M,且M為PF2的中點(diǎn),則雙曲線E的漸近線方程為( )
A.y=±B.y=±C.y=±2xD.y=±3x
查看答案和解析>>
科目: 來源: 題型:
【題目】馬林●梅森是17世紀(jì)法國著名的數(shù)學(xué)家和修道士,也是當(dāng)時歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對2p﹣1作了大量的計算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是( )
A.3B.4C.5D.6
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,得到甲、乙兩位學(xué)生成績的莖葉圖.
(1)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,對預(yù)賽成績的平均值和方差進(jìn)行分析,你認(rèn)為哪位學(xué)生的成績更穩(wěn)定?請說明理由;
(2)若將頻率視為概率,求乙同學(xué)在一次數(shù)學(xué)競賽中成績高于84分的概率;
(3)求在甲同學(xué)的8次預(yù)賽成績中,從不小于80分的成績中隨機(jī)抽取2個成績,列出所有結(jié)果,并求抽出的2個成績均大于85分的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,對該幾何體有如下描述:
①四個側(cè)面都是直角三角形;
②最長的側(cè)棱長為;
③四個側(cè)面中有三個側(cè)面是全等的直角三角形;
④外接球的表面積為24π.
其中正確的描述為____.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4 坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)寫出的極坐標(biāo)方程,并將化為普通方程;
(2)若直線的極坐標(biāo)方程為與相交于兩點(diǎn),
求的面積(為圓的圓心).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com