點P為雙曲線=1上異于頂點的任意一點.F1.F2是雙曲線兩焦點.則△PF1F2重心軌跡方程是 A.9x2-16y2=16(y≠0) B.9x2+16y2=16(y≠0) C.9x2-16y2=1(y≠0) D.9x2+16y2=1(y≠0) 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為4(+1).一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D.

(Ⅰ)求橢圓和雙曲線的標準方程

(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1

(Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值,若不存在,請說明理由.

查看答案和解析>>

如圖,A1,A為橢圓的兩個頂點,F(xiàn)1、F2為橢圓的兩個焦點.

(1)寫出橢圓的方程及其準線方程.

(2)過線段OA上異于O、A的任一點K作OA的垂線,交橢圓于P,P1兩點,直線A1P與AP1交于點M.

求證:點M在雙曲線=1上.

查看答案和解析>>

如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D.

(Ⅰ)求橢圓和雙曲線的標準方程

(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1

(Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?

若存在,求λ的值,若不存在,請說明理由.

查看答案和解析>>

如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(+1).一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.

(Ⅰ)求橢圓和雙曲線的標準方程;

(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1·k2=1;

(Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.

(1)求橢圓和雙曲線的標準方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

 

查看答案和解析>>


同步練習冊答案