3.例題分析: 查看更多

 

題目列表(包括答案和解析)

案例分析:

一般說來,一個人的身高越高,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關(guān)系.為了對這個問題進行調(diào)查,我們收集了北京市某中學2003年高三年級96名學生的身高與右手一拃長的數(shù)據(jù)如下表.

性別

身高/cm

右手一拃長/cm

性別

身高/cm

右手一拃長/cm

152

18.5

153

16.0

156

16.0

157

20.0

158

17.3

159

20.0

160

15.0

160

16.0

160

17.5

160

17.5

160

19.0

160

19.0

160

19.0

160

19.5

161

16.1

161

18.0

162

18.2

162

18.5

163

20.0

163

21.5

164

17.0

164

18.5

164

19.0

164

20.0

165

15.0

165

16.0

165

17.5

165

19.5

166

19.0

167

19.0

167

19.0

168

16.0

168

19.0

168

19.5

170

21.0

170

21.0

170

21.0

171

19.0

171

20.0

171

21.5

172

18.5

173

查看答案和解析>>

23、課本小結(jié)與復習的參考例題中,給大家分別用“綜合法”,“比較法”和“分析法”證明了不等式:已知a,b,c,d都是實數(shù),且a2+b2=1,c2+d2=1,則|ac+bd|≤1.這就是著名的柯西(Cauchy.法國)不等式當n=2時的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等號當且僅當ad=bc時成立.
請分別用中文語言和數(shù)學語言簡潔地敘述柯西不等式,并用一種方法加以證明.

查看答案和解析>>

課本小結(jié)與復習的參考例題中,給大家分別用“綜合法”,“比較法”和“分析法”證明了不等式:已知a,b,c,d都是實數(shù),且a2+b2=1,c2+d2=1,則|ac+bd|≤1.這就是著名的柯西(Cauchy.法國)不等式當n=2時的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等號當且僅當ad=bc時成立.
請分別用中文語言和數(shù)學語言簡潔地敘述柯西不等式,并用一種方法加以證明.

查看答案和解析>>

課本小結(jié)與復習的參考例題中,給大家分別用“綜合法”,“比較法”和“分析法”證明了不等式:已知a,b,c,d都是實數(shù),且a2+b2=1,c2+d2=1,則|ac+bd|≤1.這就是著名的柯西(Cauchy.法國)不等式當n=2時的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等號當且僅當ad=bc時成立.
請分別用中文語言和數(shù)學語言簡潔地敘述柯西不等式,并用一種方法加以證明.

查看答案和解析>>

(本題滿分12分)班主任為了對本班學生的考試成績進行分析,決定從全班位女同學, 位男同學中隨機抽取一個容量為的樣本進行分析。
(Ⅰ)如果按性別比例分層抽樣,可以得到多少個不同的樣本(只要求寫出算式即可,不必計算出結(jié)果);
(Ⅱ)隨機抽取位同學,數(shù)學成績由低到高依次為:
物理成績由低到高依次為:,若規(guī)定分(含分)以上為優(yōu)秀,記為這位同學中數(shù)學和物理分數(shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學期望;
(Ⅲ)若這位同學的數(shù)學、物理分數(shù)事實上對應下表:

學生編號








數(shù)學分數(shù)








物理分數(shù)








 
根據(jù)上表數(shù)據(jù)可知,變量之間具有較強的線性相關(guān)關(guān)系,求出的線性回歸方程(系數(shù)精確到).(參考公式:,其中,; 參考數(shù)據(jù):,,,,

查看答案和解析>>


同步練習冊答案