(1)求的解析式, 查看更多

 

題目列表(包括答案和解析)





.
(Ⅰ)求的解析式;
(Ⅱ)若數(shù)列滿足:),且, 求數(shù)列的通項(xiàng);
(Ⅲ)求證:

查看答案和解析>>





(1)求的解析式;
(2) 當(dāng)時(shí),不等式:恒成立,求實(shí)數(shù)的范圍.
(3)設(shè),求的最大值;

查看答案和解析>>



(1)求的解析式;
(2)若對(duì)于實(shí)數(shù),不等式恒成立,求t
的取值范圍.

查看答案和解析>>

求解析式:
(1)已知f(
1
x
)=
x
1-x2
,求f(x); 
(2)已知二次函數(shù)f(x)滿足f(0)=0且f(x+1)=f(x)+x+1,求f(x)的表達(dá)式.

查看答案和解析>>


(1)求時(shí),的解析式;
(2)若關(guān)于的方程有三個(gè)不同的解,求a的取值范圍。
(3)是否存在正數(shù)、,當(dāng)時(shí),,且的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131155070316.gif" style="vertical-align:middle;" />.若存在,求出a、b 的值;若不存在,說(shuō)明理由

查看答案和解析>>

一、1―5DCDDD       6―10CBADC   11―12DA

        • <button id="qwqkc"><tbody id="qwqkc"></tbody></button>
          <menu id="qwqkc"></menu>
            <dfn id="qwqkc"><tr id="qwqkc"></tr></dfn>
              <menu id="qwqkc"><pre id="qwqkc"></pre></menu>

              20080428

              三、17、解:

              (1)

                    

                     ∵相鄰兩對(duì)稱軸的距離為

                      

                 (2)

                     ,

                     又

                     若對(duì)任意,恒有

                     解得

              18、(理)解  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨(dú)立,且P(A)=P(B)=P(C)=.

              (Ⅰ)至少有1人面試合格的概率是

              (Ⅱ)的可能取值為0,1,2,3.

                   

                            =

                            =

                   

                            =

                            =

                   

                   

              所以, 的分布列是

              0

              1

              2

              3

              P

              的期望

              (文)解  基本事件共有6×6=36個(gè).  (Ⅰ) 是5的倍數(shù)包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7個(gè).所以,是5的倍數(shù)的概率是 .

              (Ⅱ)是3的倍數(shù)包含的基本事件(如圖)

              共20個(gè),所以,是3的倍數(shù)的概率是.

              (Ⅲ)此事件的對(duì)立事件是都不是5或6,其基本事件有個(gè),所以,中至少有一個(gè)5或6的概率是.

              19、證明:(1)∵

                                                       

              (2)令中點(diǎn)為,中點(diǎn)為,連結(jié)

                   ∵的中位線

                            

              又∵

                  

                   ∴

                   ∵為正

                     

                   ∴

                   又∵,

               ∴四邊形為平行四邊形   

                

              20、解:(1)由,得:

                          

                   (2)由             ①

                        得         ②

                    由②―①,得  

                     即:

                   

                    由于數(shù)列各項(xiàng)均為正數(shù),

                       即 

                    數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,

                    數(shù)列的通項(xiàng)公式是  

                  (3)由,得:

                    

                      

                      

              21、解(1)由題意的中垂線方程分別為,

              于是圓心坐標(biāo)為

              =,即   所以

              于是 ,所以  即

              (2)假設(shè)相切, 則,

              , 這與矛盾.

              故直線不能與圓相切.

              22、(理)

              (文)(1)f ′(x)=3x2+2a x+b=0.由題設(shè),x=1,x=-為f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.經(jīng)檢驗(yàn)得:這時(shí)都是極值點(diǎn).(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

              x

              (-∞,-)

              (-,1)

              (1,+∞)

              f ′(x)

              ∴  f (x)的遞增區(qū)間為(-∞,-),及(1,+∞),遞減區(qū)間為(-,1).當(dāng)x=-時(shí),f (x)有極大值,f (-)=;當(dāng)x=1時(shí),f (x)有極小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上遞增,在(-,1)遞減.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值為c+2.

              ∴  ∴  ∴   或∴ 

               

               

               


              同步練習(xí)冊(cè)答案