題目列表(包括答案和解析)
(本小題15分)已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),且.
(1)求拋物線的方程;
(2)過點(diǎn)作軸的平行線與直線相交于點(diǎn),若是等腰三角形,求直線的方程.
(本小題15分)已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),且.
(1)求拋物線的方程;
(2)過點(diǎn)作軸的平行線與直線相交于點(diǎn),若是等腰三角形,求直線的方程.
(本小題15分)已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),且.
(1)求拋物線的方程;
(2)過點(diǎn)作軸的平行線與直線相交于點(diǎn),若是等腰三角形,求直線的方程.
(本小題15分)已知?jiǎng)訄A被y軸所截的弦長(zhǎng)為2,被x軸分成兩段弧,且弧長(zhǎng)之比等于(其中為圓心,O為坐標(biāo)原點(diǎn))。
(1)求a,b所滿足的關(guān)系式;
(2)點(diǎn)P在直線上的投影為A,求事件“在圓P內(nèi)隨機(jī)地投入一點(diǎn),使這一點(diǎn)恰好在內(nèi)”的概率的最大值
(本小題15分)
已知函數(shù)有極值.
(1)求的取值范圍;
(2)若在處取得極值,且當(dāng)時(shí),恒成立,求的取值范圍.
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
A
C
D
C
C
B
C
B
B
D
二、填空題
11.100 12.4 13.(-2,2) 14.
15. 16. 17.
18.(本小題14分)
解答:(1)設(shè)甲選手答對(duì)一個(gè)問題的正確率為,則
故甲選手答對(duì)一個(gè)問題的正確率 3分
(Ⅱ)選手甲答了3道題目進(jìn)入決賽的概率為= 4分
選手甲答了4道題目進(jìn)入決賽的概率為 5分
選手甲答了5道題目進(jìn)入決賽的概率為 6分
選手甲可以進(jìn)入決賽的概率 8分
(Ⅲ)可取3,4,5
則有 9分
10分
11分
因此有 (直接列表也給分)
3
4
5
故 14分
19.解:由三視圖知,該多面體是低面為直角三角形的直三棱柱
(1)證明:連續(xù)取,易見通過點(diǎn),連接。
4分
(2)作于,連接
面
故為所求二面角的平面角。 6分
在中
故所求二面角的余弦值為 9分
(3)棱錐的體積 14分
20 解:(1)解方程得或 1分
當(dāng)時(shí),或,此時(shí) 2分
當(dāng)時(shí), 3分
依次類推:
5分
(2)
9分
(3)由得
11分
設(shè)
易證在上單調(diào)遞減,在()上單調(diào)遞增。 13分
15分
21.解:(1)設(shè)由得
直線的方程為:
直線的方程為:
解方程組得 3分
由已知,三點(diǎn)共線,設(shè)直線的方程為:
與拋物線方程聯(lián)立消可得:
5分
所以點(diǎn)的縱坐標(biāo)為-2,所以線段中點(diǎn)的縱坐標(biāo)O
即線段被軸平分。 6分
(2)
=0 9分
13分
而 所以在直角中,
由影射定理即得 15分
22.解:(1)代入得
設(shè) 1分
3分
令解得
在上單調(diào)遞減,在上單調(diào)遞增。 5分
即原式的最小值為-1 7分
(2)要證即證
即證
即證 9分
由已知 設(shè) 10分
11分
13分
所以在上單調(diào)遞減,
原不等式得證。 14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com