15.如圖,在直三棱柱ABC―A1B1C1中,
AB=BC=,BB1=2,,
E、F分別為AA1、C1B1的中點(diǎn),沿棱柱的表面從E
到F兩點(diǎn)的最短路徑的長度為 .
13.若函數(shù)是奇函數(shù),則a= .
(Ⅲ)選取,由(Ⅰ)可確定含峰區(qū)間為(0,)或(,1),在所得的含峰區(qū)間內(nèi)選取類似地可確定一個(gè)新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕地值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0.34.
(區(qū)間長度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
(Ⅱ)對(duì)給定的r(0<r<0.5),證明:存在,使得由(Ⅰ)所確定的含峰區(qū)間的長度不大于0.5+r;
20.(本小題共14分)
設(shè)是定義在[0,1]上的函數(shù),若存在上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.
對(duì)任意的[0,1]上的單峰函數(shù),下面研究縮短其含峰區(qū)間長度的方法.
(Ⅰ)證明:對(duì)任意的為含峰區(qū)間;
若為含峰區(qū)間;
19.(本小題共12分)
設(shè)數(shù)列
記
(Ⅰ)求a2,a3;
(Ⅱ)判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)求
18.(本小題共14分)
如圖,直線l1:與直線l2:之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2.
(Ⅰ)分別用不等式組表示W(wǎng)1和W2;
(Ⅱ)若區(qū)域W中的動(dòng)點(diǎn)P(x,y)到l1,l2的距離之積等于d2,求點(diǎn)P的軌跡C的方程;
(Ⅲ)設(shè)不過原點(diǎn)O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點(diǎn),且與l1,l2分別
交于M3,M4兩點(diǎn). 求證△OM1M2的重心與△OM3M4的重心重合.
17.(本小題共13分)
甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為
(Ⅰ)記甲擊中目標(biāo)的次數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望Eξ;
(Ⅱ)求乙至多擊中目標(biāo)2次的概率;
(Ⅲ)求甲恰好比乙多擊中目標(biāo)2次的概率.
16.(本小題共14分)
如圖,在直四棱柱ABCD―A1B1C1D1中,AB=AD=2,DC=,
AC⊥BD,垂足為E.
(Ⅰ)求證BD⊥A1C;
(Ⅱ)求二面角A1―BD―C1的大小;
15.(本小題共13分)
已知函數(shù)
(Ⅰ)求的單調(diào)減區(qū)間;
(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com