0  440413  440421  440427  440431  440437  440439  440443  440449  440451  440457  440463  440467  440469  440473  440479  440481  440487  440491  440493  440497  440499  440503  440505  440507  440508  440509  440511  440512  440513  440515  440517  440521  440523  440527  440529  440533  440539  440541  440547  440551  440553  440557  440563  440569  440571  440577  440581  440583  440589  440593  440599  440607  447090 

7. 文學(xué)常識(shí)填空。(3分)

①《     》是我國(guó)第一部紀(jì)傳體通史,課文《陳涉世家》即選自此書(shū)。

②《湖心亭看雪》是我國(guó)明末清初的文學(xué)家    的山水游記。

③《綠色蟈蟈》是   國(guó)的昆蟲(chóng)學(xué)家法布爾的作品。

試題詳情

6.補(bǔ)寫(xiě)出下列名句的上句或下句。(只選做3小題)(3分)

        ,各領(lǐng)風(fēng)騷數(shù)百年。(趙翼《論詩(shī)》)

② 不畏浮云遮望眼,         。(王安石《登飛來(lái)峰》)

        ,西出陽(yáng)關(guān)無(wú)故人。(王維《送元二使安西》)

④先帝不以臣卑鄙,猥自枉屈,         。(諸葛亮《出師表》)

試題詳情

5.下列句子中標(biāo)點(diǎn)符號(hào)使用不正確的一項(xiàng)是(   )(3分)

 A. 人生價(jià)值何在?人生出路又何在?他們面臨著巨大的痛苦與困惑。

B. 憑著崇高的理想、豪邁的氣概、樂(lè)觀的志趣,克服困難不也是一種享受嗎?

C. 黎明,葵花翹首向東迎日;正午,花盤(pán)追日轉(zhuǎn)向南方;傍晚,花兒面西作別夕陽(yáng)。

D. “管錐”二字出自《莊子·秋水》“用管窺天,用錐指地”,這為大家熟知。錢(qián)鐘書(shū)用《管錐》命名自己的著作,謙遜之外則有深意,帶有反諷的意味。

試題詳情

4. 填入下面橫線上的語(yǔ)句,與上下文銜接最恰當(dāng)?shù)囊豁?xiàng)是(  )(3分)

我們的時(shí)代,是百花齊放的時(shí)代,我們不但要盈畝滿畦的牡丹和菊花,我們也要樹(shù)下的紫羅蘭,草地邊的蒲公英。____我們的責(zé)任是不但讓讀者能兼收并蓄,而且還可以各取所需。

 A. 世界上沒(méi)有不愛(ài)花卉的人,但是每人的愛(ài)好又是多種多樣的。

 B. 世界上沒(méi)有不愛(ài)花卉的人,但是每人的愛(ài)好不盡相同。

 C. 因?yàn)槊糠N花都有生存的權(quán)力,人們既愛(ài)牡丹.菊花,又愛(ài)紫羅蘭.蒲公英。

 D. 因?yàn)槊糠N花都有生存的權(quán)力,那么每位讀者也有選擇的權(quán)力。

試題詳情

3.依次填入下列句子橫線處的詞語(yǔ),最恰當(dāng)?shù)囊豁?xiàng)是(   )(3分)

①秘書(shū)處聽(tīng)取并____了各位代表的提案,擬將其分類(lèi)后,呈交主席團(tuán)。

②程老領(lǐng)銜____ 《敦煌彩繪源流新證》,填補(bǔ)了敦煌藝術(shù)研究的空白。

③我正在欣賞著這里的景致,一位穿長(zhǎng)袍戴小帽的老先生騎著一頭小毛驢   ____走過(guò)我的身旁。

A. 搜集   編著   悠然自得      B.搜集   編纂   泰然自若 

C. 收集   編纂   悠然自得      D.收集   編著   泰然自若

試題詳情

1..下列加點(diǎn)字的注音全都正確的一項(xiàng)是(  )(3分)

A.好(shì)  破 (dìng)   流 (bèng)   味同蠟 (jiáo)

B.意 (xiá)   澎 (pài)    然 (hè)    泰然之 (chǔ)

C.麗 (qǐ)   藏 (zhù)    紐 (qū)     茅頓開(kāi) (sè)

D.事 (zhào)  阻 (è)     蕩 (dí)     為人道 (xiǎn) 2.下列詞語(yǔ)中沒(méi)有錯(cuò)別字的一組是(  )(3分)

A. 饒恕  不屈不撓   瑕疵  聞名遐邇  B. 渡假  渡過(guò)難關(guān)  范疇  一籌莫展

C. 渙散  滄海桑田   訣擇  深?lèi)和唇^  D. 契約  鍥而不舍  青翠  山青水秀

試題詳情

數(shù)學(xué)教材是學(xué)習(xí)數(shù)學(xué)基礎(chǔ)知識(shí)、形成基本技能的“藍(lán)本”,能力是在知識(shí)傳授和學(xué)習(xí)過(guò)程中得到培養(yǎng)和發(fā)展的。新課程試卷中平面向量的有些問(wèn)題與課本的例習(xí)題相同或相似,雖然只是個(gè)別小題,但它對(duì)學(xué)習(xí)具有指導(dǎo)意義,教學(xué)中重視教材的使用應(yīng)有不可估量的作用。因此,學(xué)習(xí)階段要在掌握教材的基礎(chǔ)上把各個(gè)局部知識(shí)按照一定的觀點(diǎn)和方法組織成整體,形成知識(shí)體系。

學(xué)習(xí)本章主要樹(shù)立數(shù)形轉(zhuǎn)化和結(jié)合的觀點(diǎn),以數(shù)代形,以形觀數(shù),用代數(shù)的運(yùn)算處理幾何問(wèn)題,特別是處理向量的相關(guān)位置關(guān)系,正確運(yùn)用共線向量和平面向量的基本定理,計(jì)算向量的模、兩點(diǎn)的距離等。由于向量是一新的工具,它往往會(huì)與三角函數(shù)、數(shù)列、不等式、解幾等結(jié)合起來(lái)進(jìn)行綜合考查,是知識(shí)的交匯點(diǎn).

(1)向量的加法與減法是互逆運(yùn)算;

(2)相等向量與平行向量有區(qū)別,向量平行是向量相等的必要條件;

(3)向量平行與直線平行有區(qū)別,直線平行不包括共線(即重合),而向量平行則包括共線(重合)的情況;

(4)向量的坐標(biāo)與表示該向量的有向線條的始點(diǎn)、終點(diǎn)的具體位置無(wú)關(guān),只與其相對(duì)位置有關(guān)系.

試題詳情

題型1:平面向量的概念

例1.(1)給出下列命題:

①若||=||,則=;

②若A,BC,D是不共線的四點(diǎn),則是四邊形ABCD為平行四邊形的充要條件;

③若==,則=;

=的充要條件是||=||且//;

⑤ 若//,//,則//;

其中正確的序號(hào)是      。

(2)設(shè)為單位向量,(1)若為平面內(nèi)的某個(gè)向量,則=|;(2)若與a0平行,則=|;(3)若平行且||=1,則=。上述命題中,假命題個(gè)數(shù)是(   )

A.0               B.1               C.2               D.3

解析:(1)①不正確.兩個(gè)向量的長(zhǎng)度相等,但它們的方向不一定相同;

②正確;∵ ,∴ ,

ABC,D是不共線的四點(diǎn),∴ 四邊形 ABCD為平行四邊形;反之,若四邊形ABCD為平行四邊形,則,,

因此,。

③正確;∵ =,∴ ,的長(zhǎng)度相等且方向相同;

,∴ ,的長(zhǎng)度相等且方向相同,

,的長(zhǎng)度相等且方向相同,故。

   ④不正確;當(dāng)//且方向相反時(shí),即使||=||,也不能得到=,故||=||且//不是=的充要條件,而是必要不充分條件;

   ⑤不正確;考慮=這種特殊情況;

   綜上所述,正確命題的序號(hào)是②③。

點(diǎn)評(píng):本例主要復(fù)習(xí)向量的基本概念。向量的基本概念較多,因而容易遺忘。為此,復(fù)習(xí)時(shí)一方面要構(gòu)建良好的知識(shí)結(jié)構(gòu),另一方面要善于與物理中、生活中的模型進(jìn)行類(lèi)比和聯(lián)想。

(2)向量是既有大小又有方向的量,與||模相同,但方向不一定相同,故(1)是假命題;若平行,則方向有兩種情況:一是同向二是反向,反向時(shí)=-||,故(2)、(3)也是假命題。綜上所述,答案選D。

點(diǎn)評(píng):向量的概念較多,且容易混淆,故在學(xué)習(xí)中要分清,理解各概念的實(shí)質(zhì),注意區(qū)分共線向量、平行向量、同向向量等概念。

題型2:平面向量的運(yùn)算法則

例2.(1)如圖所示,已知正六邊形ABCDEF,O是它的中心,若==,試用將向量,, 表示出來(lái)。

(1)解析:根據(jù)向量加法的平行四邊形法則和減法的三角形法則,用向量,來(lái)表示其他向量,只要考慮它們是哪些平行四邊形或三角形的邊即可。

因?yàn)榱呅?i style='mso-bidi-font-style:normal'>ABCDEF是正六邊形,所以它的中心O及頂點(diǎn)A,B,C四點(diǎn)構(gòu)成平行四邊形ABCO

所以,=+,= =+,

由于A,B,O,F四點(diǎn)也構(gòu)成平行四邊形ABOF,所以=+=+=++=2+,

同樣在平行四邊形 BCDO中,+(+)=+2,。

點(diǎn)評(píng):其實(shí)在以A,B,C,D,E,FO七點(diǎn)中,任兩點(diǎn)為起點(diǎn)和終點(diǎn),均可用 ,表示,且可用規(guī)定其中任兩個(gè)向量為,,另外任取兩點(diǎn)為起點(diǎn)和終點(diǎn),也可用,表示。

(3)(2008湖南文,4)

11.已知向量,,則=_____________________.

[答案]2

[解析]由

(4)(2009年廣東卷文)已知平面向量a= ,b=, 則向量 (   )

A平行于軸              B.平行于第一、三象限的角平分線

C.平行于軸                 D.平行于第二、四象限的角平分線 

答案  C

解析  ,由及向量的性質(zhì)可知,C正確.

例4.設(shè)為未知向量,、為已知向量,解方程2-(5+3-4)+ -3=0.

解析:原方程可化為:(2 - 3) + (-5+) + (4-3) = 0,

=+ 。

點(diǎn)評(píng):平面向量的數(shù)乘運(yùn)算類(lèi)似于代數(shù)中實(shí)數(shù)與未知數(shù)的運(yùn)算法則,求解時(shí)兼顧到向量的性質(zhì)。

題型3:平面向量的坐標(biāo)及運(yùn)算

例5.已知中,A(2,-1),B(3,2),C(-3,1),BC邊上的高為AD,求。

解析:設(shè)D(x,y),則

所以。

例6.已知點(diǎn),試用向量方法求直線(為坐標(biāo)原點(diǎn))交點(diǎn)的坐標(biāo)。

解析:設(shè),則

因?yàn)?sub>的交點(diǎn),所以在直線上,也在直線上。

即得,由點(diǎn)得,

得方程組,解之得

故直線的交點(diǎn)的坐標(biāo)為。

題型4:平面向量的性質(zhì)

例7.平面內(nèi)給定三個(gè)向量,回答下列問(wèn)題:

(1)求滿足的實(shí)數(shù)m,n;

(2)若,求實(shí)數(shù)k;

(3)若滿足,且,求。

解析:(1)由題意得,所以,得。

(2)

;

(3)

由題意得,得

例8.已知

(1)求;

(2)當(dāng)為何實(shí)數(shù)時(shí),平行, 平行時(shí)它們是同向還是反向?

解析:(1)因?yàn)?sub>

所以

(2),

因?yàn)?sub>平行,所以即得

此時(shí),,則,即此時(shí)向量方向相反。

點(diǎn)評(píng):上面兩個(gè)例子重點(diǎn)解析了平面向量的性質(zhì)在坐標(biāo)運(yùn)算中的體現(xiàn),重點(diǎn)掌握平面向量的共線的判定以及平面向量模的計(jì)算方法。

題型5:共線向量定理及平面向量基本定理

例9.(2009北京卷文)已知向量,如果

那么                                                          (    )

 A.同向         B.反向

 C.同向        D.反向

答案  D

解析  本題主要考查向量的共線(平行)、向量的加減法. 屬于基礎(chǔ)知識(shí)、基本運(yùn)算考查.

ab,若,則cab,dab

  顯然,ab不平行,排除A、B.

  若,則cab,dab

cdcd反向,排除C,故選D.

點(diǎn)評(píng):熟練運(yùn)用向量的加法、減法、實(shí)數(shù)與向量的積的坐標(biāo)運(yùn)算法則進(jìn)行運(yùn)算;兩個(gè)向量平行的坐標(biāo)表示;運(yùn)用向量的坐標(biāo)表示,使向量的運(yùn)算完全代數(shù)化,將數(shù)與形有機(jī)的結(jié)合。

例10.(1)(06福建理,11)已知︱︱=1,︱︱=,=0,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)=m+n(m、n∈R),則等于(  )

A.        B.3       C.     D.

(2)(2009安徽卷理)給定兩個(gè)長(zhǎng)度為1的平面向量,它們的夾角為.

如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧上變動(dòng).

其中,則

的最大值是________.

答案  2

解析  設(shè)

,即

題型6:平面向量綜合問(wèn)題

例11.(2009上海卷文)   已知ΔABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量,

  .

(1)    若//,求證:ΔABC為等腰三角形;  

(2)    若,邊長(zhǎng)c = 2,角C = ,求ΔABC的面積 .

證明:(1)

,其中R是三角形ABC外接圓半徑,  為等腰三角形

解(2)由題意可知

由余弦定理可知,        

   

試題詳情

5.平面向量的坐標(biāo)表示

(1)平面向量的坐標(biāo)表示:在直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量作為基底.由平面向量的基本定理知,該平面內(nèi)的任一向量可表示成,由于與數(shù)對(duì)(x,y)是一一對(duì)應(yīng)的,因此把(x,y)叫做向量的坐標(biāo),記作=(x,y),其中x叫作在x軸上的坐標(biāo),y叫做在y軸上的坐標(biāo)。

規(guī)定:

(1)相等的向量坐標(biāo)相同,坐標(biāo)相同的向量是相等的向量;

(2)向量的坐標(biāo)與表示該向量的有向線段的始點(diǎn)、終點(diǎn)的具體位置無(wú)關(guān),只與其相對(duì)位置有關(guān)系。

(2)平面向量的坐標(biāo)運(yùn)算:

①若,則;

②若,則;

③若=(x,y),則=(x, y);

④若,則。

試題詳情


同步練習(xí)冊(cè)答案