線段AP的長
∠AOP的弧度數(shù) 大圓劣弧AP的長
8.球的表面積及體積公式
S球表=4πR2 V球=πR3
⑴球的體積公式可以這樣來考慮:我們把球面分成若干個邊是曲線的小“曲邊三角形”;以球心為頂點,以這些小曲邊三角形的頂點為底面三角形的頂點,得到若干個小三棱錐,所有這些小三棱錐的體積和可以看作是球體積的近似值.當小三棱錐的個數(shù)無限增加,且所有這些小三棱錐的底面積無限變小時,小三棱錐的體積和就變成球體積,同時小三棱錐底面面積的和就變成球面面積,小三棱錐高變成球半徑.由于第n個小三棱錐的體積=Snhn(Sn為該小三棱錐的底面積,hn為小三棱錐高),所以V球=S球面?R=?4πR2?R=πR3.
⑵球與其它幾何體的切接問題,要仔細觀察、分析、弄清相關(guān)元素的位置關(guān)系和數(shù)量關(guān)系,選擇最佳角度作出截面,以使空間問題平面化。
⑶須從棱柱的定義出發(fā),根據(jù)第一章的相關(guān)定理對棱柱的基本性質(zhì)進行分析推導,以求更好地理解、掌握并能正確地運用這些性質(zhì)。
⑷關(guān)于平行六面體,在掌握其所具有的棱柱的一般性質(zhì)外,還須掌握由其定義導出的一些其特有的性質(zhì),如長方體的對角線長定理是一個重要定理并能很好地掌握和應(yīng)用。還須注意,平行六面體具有一些與平面幾何中的平行四邊形相對應(yīng)的性質(zhì),恰當?shù)剡\用平行四邊形的性質(zhì)及解題思路去解平行六面體的問題是一常用的解題方法。
⑸多面體與旋轉(zhuǎn)體的問題離不開構(gòu)成幾何體的基本要素點、線、面及其相互關(guān)系,因此,很多問題實質(zhì)上就是在研究點、線、面的位置關(guān)系,與《直線、平面、簡單幾何體》第一部分的問題相比,唯一的差別就是多了一些概念,比如面積與體積的度量等.從這個角度來看,點、線、面及其位置關(guān)系仍是我們研究的重點.
7.經(jīng)緯度及球面距離
⑴根據(jù)經(jīng)線和緯線的意義可知,某地的經(jīng)度是一個二面角的度數(shù),某地的緯度是一個線面角的度數(shù),設(shè)球O的地軸為NS,圓O是0°緯線,半圓NAS是0°經(jīng)線,若某地P是在東經(jīng)120°,北緯40°,我們可以作出過P的經(jīng)線NPS交赤道于B,過P的緯線圈圓O1交NAS于A,那么則應(yīng)有:∠AO1P=120°(二面角的平面角) ,∠POB=40°(線面角)。
⑵兩點間的球面距離就是連結(jié)球面上兩點的大圓的劣弧的長,因此,求兩點間的球面距離的關(guān)鍵就在于求出過這兩點的球半徑的夾角。
例如,可以循著如下的程序求A、P兩點的球面距離。
6.棱柱的概念和性質(zhì)
5.空間的距離問題,主要是求空間兩點之間、點到直線、點到平面、兩條異面直線之間(限于給出公垂線段的)、平面和它的平行直線、以及兩個平行平面之間的距離.
求距離的一般方法和步驟是:一作――作出表示距離的線段;二證――證明它就是所要求的距離;三算――計算其值.此外,我們還常用體積法求點到平面的距離.
4.空間的角和距離是空間圖形中最基本的數(shù)量關(guān)系,空間的角主要研究射影以及與射影有關(guān)的定理、空間兩直線所成的角、直線和平面所成的角、以及二面角和二面角的平面角等.解這類問題的基本思路是把空間問題轉(zhuǎn)化為平面問題去解決.
空間的角,是對由點、直線、平面所組成的空間圖形中各種元素間的位置關(guān)系進行定量分析的一個重要概念,由它們的定義,可得其取值范圍,如兩異面直線所成的角θ∈(0,],直線與平面所成的角θ∈,二面角的大小,可用它們的平面角來度量,其平面角θ∈0,π.
對于空間角的計算,總是通過一定的手段將其轉(zhuǎn)化為一個平面內(nèi)的角,并把它置于一個平面圖形,而且是一個三角形的內(nèi)角來解決,而這種轉(zhuǎn)化就是利用直線與平面的平行與垂直來實現(xiàn)的,因此求這些角的過程也是直線、平面的平行與垂直的重要應(yīng)用.通過空間角的計算和應(yīng)用進一步培養(yǎng)運算能力、邏輯推理能力及空間想象能力.
如求異面直線所成的角常用平移法(轉(zhuǎn)化為相交直線)與向量法;求直線與平面所成的角常利用射影轉(zhuǎn)化為相交直線所成的角;而求二面角a-l-b的平面角(記作q)通常有以下幾種方法:
(1) 根據(jù)定義;
(2) 過棱l上任一點O作棱l的垂面g,設(shè)g∩a=OA,g∩b=OB,則∠AOB=q ;
(3) 利用三垂線定理或逆定理,過一個半平面a內(nèi)一點A,分別作另一個平面b的垂線AB(垂足為B),或棱l的垂線AC(垂足為C),連結(jié)AC,則∠ACB=q 或∠ACB=p-q;
(4) 設(shè)A為平面a外任一點,AB⊥a,垂足為B,AC⊥b,垂足為C,則∠BAC=q或∠BAC=p-q;
(5) 利用面積射影定理,設(shè)平面a內(nèi)的平面圖形F的面積為S,F(xiàn)在平面b內(nèi)的射影圖形的面積為S¢,則cosq=.
3.兩個平面平行的主要性質(zhì):
⑴由定義知:“兩平行平面沒有公共點”。
⑵由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面。
⑶兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那
么它們的交線平行”。
⑷一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。
⑸夾在兩個平行平面間的平行線段相等。
⑹經(jīng)過平面外一點只有一個平面和已知平面平行。
以上性質(zhì)⑵、⑷、⑸、⑹在課文中雖未直接列為“性質(zhì)定理”,但在解題過程中均可直接作為性質(zhì)定理引用。
2.判定兩個平面平行的方法:
(1)根據(jù)定義――證明兩平面沒有公共點;
(2)判定定理――證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復習中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律――充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力.
例9.平面直角坐標系有點
(1) 求向量和的夾角的余弦用表示的函數(shù);
(2) 求的最值.
解:(1),
即
(2) , 又 ,
, , .
說明:三角函數(shù)與向量之間的聯(lián)系很緊密,解題時要時刻注意。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com