【題目】如圖,菱形的邊長(zhǎng)為1,,點(diǎn)E是邊上任意一點(diǎn)(端點(diǎn)除外),線段的垂直平分線交,分別于點(diǎn)F,G,,的中點(diǎn)分別為M,N.
(1)求證:;
(2)求的最小值;
(3)當(dāng)點(diǎn)E在上運(yùn)動(dòng)時(shí),的大小是否變化?為什么?
【答案】(1)見(jiàn)解析;(2);(3)不變,理由見(jiàn)解析.
【解析】
(1)連接CF,根據(jù)垂直平分線的性質(zhì)和菱形的對(duì)稱性得到CF=EF和CF=AF即可得證;
(2)連接AC,根據(jù)菱形對(duì)稱性得到AF+CF最小值為AC,再根據(jù)中位線的性質(zhì)得到MN+NG的最小值為AC的一半,即可求解;
(3)延長(zhǎng)EF,交DC于H,利用外角的性質(zhì)證明∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,從而推斷出∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,從而可求出∠ABF=∠CEF=30°,即可證明.
解:(1)連接CF,
∵FG垂直平分CE,
∴CF=EF,
∵四邊形ABCD為菱形,
∴A和C關(guān)于對(duì)角線BD對(duì)稱,
∴CF=AF,
∴AF=EF;
(2)連接AC,
∵M和N分別是AE和EF的中點(diǎn),點(diǎn)G為CE中點(diǎn),
∴MN=AF,NG=CF,即MN+NG=(AF+CF),
當(dāng)點(diǎn)F與菱形ABCD對(duì)角線交點(diǎn)O重合時(shí),
AF+CF最小,即此時(shí)MN+NG最小,
∵菱形ABCD邊長(zhǎng)為1,∠ABC=60°,
∴△ABC為等邊三角形,AC=AB=1,
即MN+NG的最小值為;
(3)不變,理由是:
延長(zhǎng)EF,交DC于H,
∵∠CFH=∠FCE+∠FEC,∠AFH=∠FAE+∠FEA,
∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,
∵點(diǎn)F在菱形ABCD對(duì)角線BD上,根據(jù)菱形的對(duì)稱性可得:
∠AFD=∠CFD=∠AFC,
∵AF=CF=EF,
∴∠AEF=∠EAF,∠FEC=∠FCE,
∴∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,
∴∠ABF=∠CEF,
∵∠ABC=60°,
∴∠ABF=∠CEF=30°,為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、的坐標(biāo)分別為、,點(diǎn)在第一象限內(nèi),,,函數(shù)的圖像經(jīng)過(guò)點(diǎn),將沿軸的正方向向右平移個(gè)單位長(zhǎng)度,使點(diǎn)恰好落在函數(shù)的圖像上,則的值為( )
A.B.C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園的門票價(jià)格如表:
購(gòu)票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價(jià)格 | 13元/人 | 11元/人 | 9元/人 |
現(xiàn)某單位要組織其市場(chǎng)部和生產(chǎn)部的員工游覽該公園,這兩個(gè)部門人數(shù)分別為a和b(a≥b).若按部門作為團(tuán)體,選擇兩個(gè)不同的時(shí)間分別購(gòu)票游覽公園,則共需支付門票費(fèi)為1290元;若兩個(gè)部門合在一起作為一個(gè)團(tuán)體,同一時(shí)間購(gòu)票游覽公園,則共需支付門票費(fèi)為990元,那么這兩個(gè)部門的人數(shù)a=_____;b=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,觀測(cè)站C發(fā)現(xiàn)在它的正西方向,有一艘漁船B出現(xiàn)險(xiǎn)情,需救援,當(dāng)即上報(bào)救援中心A,測(cè)得C在A的南偏東67方向,距A處50海里,而B在A的南偏東30方向,求漁船B與救援中心A的距離AB,漁船B與觀測(cè)站C的距離BC.(結(jié)果精確到0.1海里)(參考數(shù)據(jù):sin37=0.6,cos37=0.8,tan37=,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年是脫貧攻堅(jiān)年,為實(shí)現(xiàn)全員脫貧目標(biāo),某村貧困戶在當(dāng)?shù)卣С謳椭拢k起了養(yǎng)雞場(chǎng),經(jīng)過(guò)一段時(shí)間精心飼養(yǎng),總量為3000只的一批雞可以出售.現(xiàn)從中隨機(jī)抽取50只,得到它們質(zhì)量的統(tǒng)計(jì)數(shù)據(jù)如下:
質(zhì)量 | 組中值 | 數(shù)量(只) |
1.0 | 6 | |
1.2 | 9 | |
1.4 | a | |
1.6 | 15 | |
1.8 | 8 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)表中______,補(bǔ)全頻數(shù)分布直方圖;
(2)這批雞中質(zhì)量不小于的大約有多少只?
(3)這些貧因戶的總收入達(dá)到54000元,就能實(shí)現(xiàn)全員脫貧目標(biāo).按15元的價(jià)格售出這批雞后,該村貧困戶能否脫貧?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB是的直徑,點(diǎn)C是上一點(diǎn),連接AC、BC,直線MN過(guò)點(diǎn)C,滿足.
(1)如圖①,求證:直線MN是的切線;
(2)如圖②,點(diǎn)D在線段BC上,過(guò)點(diǎn)D作于點(diǎn)H,直線DH交于點(diǎn)E、F,連接AF并延長(zhǎng)交直線MN于點(diǎn)G,連接CE,且,若的半徑為1,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC中點(diǎn),AE∥BD,且AE=BD.
(1)求證:四邊形AEBD是矩形;
(2)連接CE交AB于點(diǎn)F,若∠ABE=30°,AE=2,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接:“國(guó)家衛(wèi)生城市”復(fù)檢,某市壞衛(wèi)局準(zhǔn)備購(gòu)買A、B兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需540元,購(gòu)買2個(gè)A型垃圾箱比購(gòu)買3個(gè)B型垃圾箱少用160元.
(1)求每個(gè)A型垃圾箱和B型垃圾箱各多少元?
(2)該市現(xiàn)需要購(gòu)A、B買兩種型號(hào)的垃圾箱共30個(gè),其中買A型垃圾箱不超過(guò)16個(gè).求出購(gòu)買費(fèi)用最少時(shí)的購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā),沿的路線勻速運(yùn)動(dòng),設(shè)(單位:度),那么y與點(diǎn)P運(yùn)動(dòng)的時(shí)間(單位:秒)的關(guān)系圖是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com