【題目】我們定義:兩個(gè)二次項(xiàng)系數(shù)之和為1,對(duì)稱軸相同,且圖象與y軸交點(diǎn)也相同的二次函數(shù)互為友好同軸二次函數(shù)例如:的友好同軸二次函數(shù)為

請(qǐng)你分別寫出,的友好同軸二次函數(shù);

滿足什么條件的二次函數(shù)沒有友好同軸二次函數(shù)?滿足什么條件的二次函數(shù)的友好同軸二次函數(shù)是它本身?

如圖,二次函數(shù)與其友好同軸二次函數(shù)都與y軸交于點(diǎn)A,點(diǎn)B、C分別在、上,點(diǎn)B,C的橫坐標(biāo)均為,它們關(guān)于的對(duì)稱軸的對(duì)稱點(diǎn)分別為,連結(jié),,,CB.

,且四邊形為正方形,求m的值;

,且四邊形的鄰邊之比為1:2,直接寫出a的值.

【答案】函數(shù)的友好同軸二次函數(shù)為;函數(shù)的友好同軸二次函數(shù)為;二次項(xiàng)系數(shù)為1的二次函數(shù)沒有友好同軸二次函數(shù);二次項(xiàng)系數(shù)為的二次函數(shù)的友好同軸二次函數(shù)是它本身的值為;的值為、

【解析】

(1)根據(jù)友好同軸二次函數(shù)的定義,找出、的友好同軸二次函數(shù)即可;

(2)由二次項(xiàng)系數(shù)非零可得出二次項(xiàng)系數(shù)為1的二次函數(shù)沒有友好同軸二次函數(shù),由友好同軸二次函數(shù)的定義可知:二次項(xiàng)系數(shù)為的二次函數(shù)的友好同軸二次函數(shù)是它本身;

(3)根據(jù)二次函數(shù)L_1的解析式找出其友好同軸二次函數(shù)L_2的函數(shù)解析式.

①代入a=3,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)B、C、B'、C'的坐標(biāo),進(jìn)而可得出BC、BB'的值,由正方形的性質(zhì)可得出BC=BB',即關(guān)于m的一元二次方程,解之取其大于0小于2的值即可得出結(jié)論;

②由m=1,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)B、C、B'、C'的坐標(biāo),進(jìn)而可得出BC、BB'的值,由兩邊之比為1:2,即可得出關(guān)于a的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論.

,

函數(shù)的友好同軸二次函數(shù)為;

,,

函數(shù)的友好同軸二次函數(shù)為

二次項(xiàng)系數(shù)為1的二次函數(shù)沒有友好同軸二次函數(shù);

,

二次項(xiàng)系數(shù)為的二次函數(shù)的友好同軸二次函數(shù)是它本身.

二次函數(shù)的對(duì)稱軸為直線,其友好同軸二次函數(shù)

,

二次函數(shù),二次函數(shù),

點(diǎn)B的坐標(biāo)為,點(diǎn)C的坐標(biāo)為,

點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

,

四邊形為正方形,

,即,

解得:不合題意,舍去,

的值為

當(dāng)時(shí),點(diǎn)B的坐標(biāo)為,點(diǎn)C的坐標(biāo)為,

點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

,

四邊形的鄰邊之比為1:2,

,即,

解得:,,,

的值為、、

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為決定誰(shuí)獲得僅有的一張電影票,甲和乙設(shè)計(jì)了如下游戲:在三張完全相同的卡片上,分別寫上字母,,背面朝上,每次活動(dòng)洗均勻.

甲說(shuō):我隨機(jī)抽取一張,若抽到字母,電影票歸我;

乙說(shuō):我隨機(jī)抽取一張后放回,再隨機(jī)抽取一張,若兩次抽取的字母相同的電影票歸我.

求甲獲得電影票的概率;求乙獲得電影票的概率;此游戲?qū)φl(shuí)有利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這

個(gè)分式為和諧分式”.

1)下列分式:;;. 其中是和諧分式 (填寫序號(hào)即可);

2)若為正整數(shù),且和諧分式,請(qǐng)寫出的值;

3)在化簡(jiǎn)時(shí),

小東和小強(qiáng)分別進(jìn)行了如下三步變形:

小東:

小強(qiáng):

顯然,小強(qiáng)利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡(jiǎn)單,

原因是: ,

請(qǐng)你接著小強(qiáng)的方法完成化簡(jiǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車同時(shí)從城出發(fā)駛向城,甲車到達(dá)城后立即返回.如圖它們離城的距離(千米)與行駛時(shí)間(小時(shí))之間的函數(shù)圖象.

1)求甲車行駛過程中的函數(shù)解析式,并寫出自變量的取值范圍;

2)求相遇時(shí)間和乙車速度;

3)在什么時(shí)間段內(nèi)甲車在乙車前面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.

(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);

(2)如圖2,將拋物線C1向下平移k(k0)個(gè)單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)A′B′G′是等邊三角形時(shí),求k的值:

(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線分別交拋物線C1、C2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與AOQ全等,若存在,直接寫出點(diǎn)M,N的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).

(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,上的一點(diǎn),,點(diǎn)上的一動(dòng)點(diǎn),點(diǎn)上的一動(dòng)點(diǎn),則的最小值為 ________,當(dāng)的值取最小值時(shí),則的面積為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),將繞著點(diǎn)旋轉(zhuǎn)后得到

在圖中畫出;

點(diǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)分別是’________’________;

請(qǐng)直接寫出的數(shù)量關(guān)系和位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某民俗旅游村為接待游客住宿需要,開設(shè)了有張床位的旅館,當(dāng)每張床位每天收費(fèi)元時(shí),床位可全部租出.若每張床位每天收費(fèi)提高元,則相應(yīng)的減少了張床位租出.如果每張床位每天以元為單位提高收費(fèi),為使租出的床位少且租金高,那么每張床位每天最合適的收費(fèi)是(

A. 14 B. 15 C. 16 D. 18

查看答案和解析>>

同步練習(xí)冊(cè)答案