【題目】某商場(chǎng)柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的、兩種型號(hào)的電器,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
種型號(hào) | 種型號(hào) | ||
第一周 | 3臺(tái) | 4臺(tái) | 1200元 |
第二周 | 5臺(tái) | 6臺(tái) | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入—進(jìn)貨成本)
(1)求、兩種型號(hào)的電器的銷售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電器共50臺(tái),求種型號(hào)的電器最多能采購(gòu)多少臺(tái)?
(3)在(2)中商場(chǎng)用不多于7500元采購(gòu)這兩種型號(hào)的電器共50臺(tái)的條件下,商場(chǎng)銷售完這50臺(tái)電器能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
【答案】(1)A型電器銷售單價(jià)為200元,B型電器銷售單價(jià)150元;(2)最多能采購(gòu)37臺(tái);(3)方案一:采購(gòu)A型36臺(tái)B型14臺(tái);方案二:采購(gòu)A型37臺(tái)B型13臺(tái).
【解析】
(1)設(shè)A、B兩種型號(hào)電器的銷售單價(jià)分別為x元、y元,根據(jù)3臺(tái)A型號(hào)4臺(tái)B型號(hào)的電器收入1200元,5臺(tái)A型號(hào)6臺(tái)B型號(hào)的電器收入1900元,列方程組求解;
(2)設(shè)采購(gòu)A種型號(hào)電器a臺(tái),則采購(gòu)B種型號(hào)電器(50a)臺(tái),根據(jù)金額不多余7500元,列不等式求解;
(3)根據(jù)A型號(hào)的電器的進(jìn)價(jià)和售價(jià),B型號(hào)的電器的進(jìn)價(jià)和售價(jià),再根據(jù)一件的利潤(rùn)乘以總的件數(shù)等于總利潤(rùn)列出不等式,再進(jìn)行求解即可得出答案.
解:(1)設(shè)A型電器銷售單價(jià)為x元,B型電器銷售單價(jià)y元,
則 ,
解得:,
答:A型電器銷售單價(jià)為200元,B型電器銷售單價(jià)150元;
(2)設(shè)A型電器采購(gòu)a臺(tái),
則160a+120(50a)≤7500,
解得:a≤,
則最多能采購(gòu)37臺(tái);
(3)設(shè)A型電器采購(gòu)a臺(tái),
依題意,得:(200160)a+(150120)(50a)>1850,
解得:a>35,
則35<a≤,
∵a是正整數(shù),
∴a=36或37,
方案一:采購(gòu)A型36臺(tái)B型14臺(tái);
方案二:采購(gòu)A型37臺(tái)B型13臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖 1 所示,△ ABC 和△ AEF 為等邊三角形,點(diǎn) E 在△ ABC 內(nèi)部,且 E 到點(diǎn) A、B、C 的距離分別為 3、4、5,求∠AEB 的度數(shù).
(2)如圖 2,在△ ABC 中,∠CAB=90°,AB=AC,M、N 為 BC 上的兩點(diǎn),且∠MAN=45°,MN2 與 NC2+BM2 有何關(guān)系?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了科學(xué)建設(shè)“學(xué)生健康成長(zhǎng)工程”,隨機(jī)抽取了部分學(xué)生家庭對(duì)其家長(zhǎng)進(jìn)行了主題“周末孩子在家您關(guān)心了嗎?”的調(diào)查問(wèn)卷,將收回的調(diào)查問(wèn)卷進(jìn)行了分析整理,得到了如下的樣本統(tǒng)計(jì)圖表和扇形統(tǒng)計(jì)圖:
代號(hào) | 情況分類 | 家庭數(shù) |
A | 帶孩子玩且關(guān)心其作業(yè)完成情況 | 8 |
B | 只關(guān)心其作業(yè)完成情況 | m |
C | 只帶孩子玩 | 4 |
D | 既不帶孩子玩也不關(guān)心其作業(yè)完成情況 | n |
(1)求m,n的值;
(2)該校學(xué)生家庭總數(shù)為500,學(xué)校決定按比例在B、C、D類家庭中抽取家長(zhǎng)組成培訓(xùn)班,其比例為B類20%,C、D類各取60%,請(qǐng)你估計(jì)該培訓(xùn)班的家庭數(shù);
(3)若在C類家庭中只有一個(gè)是城鎮(zhèn)家庭,其余是農(nóng)村家庭,請(qǐng)用列舉法求出C類中隨機(jī)抽出2個(gè)家庭進(jìn)行深度家訪,其中有一個(gè)是城鎮(zhèn)家庭的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)你根據(jù)如圖所示的阿寶與仙鶴的對(duì)話,解答下列問(wèn)題:
(1)仙鶴為什么說(shuō)多邊形內(nèi)角和的度數(shù)不可能是;
(2)若圖中仙鶴所提到的外角的度數(shù)為,請(qǐng)分別求仙鶴所畫(huà)的多邊形的內(nèi)角和的度數(shù)與邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(a,0),(b,0)且+|b-2|=0.
(1)求a、b的值;
(2)在y軸上是否存在點(diǎn)C,使三角形ABC的面積是12?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)已知點(diǎn)P是y軸正半軸上一點(diǎn),且到x軸的距離為3,若點(diǎn)P沿平行于x軸的負(fù)半軸方向以每秒1個(gè)單位長(zhǎng)度平移至點(diǎn)Q,當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),四邊形ABPQ的面積S為15個(gè)平方單位?寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知兩條直線AB,CD被直線EF所截,分別交于點(diǎn)E,點(diǎn)F,EM平分∠AEF交CD于點(diǎn)M,且∠FEM=∠FME.
(1)直線AB與直線CD是否平行,說(shuō)明你的理由;
(2)如圖2,點(diǎn)G是射線MD上一動(dòng)點(diǎn)(不與點(diǎn)M,F重合),EH平分∠FEG交CD于點(diǎn)H,過(guò)點(diǎn)H作HN⊥EM于點(diǎn)N,設(shè)∠EHN=α,∠EGF=β.
①當(dāng)點(diǎn)G在點(diǎn)F的右側(cè)時(shí),若β=60°,求α的度數(shù);
②當(dāng)點(diǎn)G在運(yùn)動(dòng)過(guò)程中,α和β之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過(guò)程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠第一季度生產(chǎn)甲、乙兩種機(jī)器共450臺(tái),改進(jìn)生產(chǎn)技術(shù)后,計(jì)劃第二季度生產(chǎn)這兩種機(jī)器共520臺(tái),其中甲種機(jī)器增產(chǎn)10%,乙種機(jī)器增產(chǎn)20%,該廠第一季度生產(chǎn)甲、乙兩種機(jī)器各多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是△ABC邊BC上一點(diǎn),AD=BD,且AD平分∠BAC.(1)若∠B=50°,求∠ADC的度數(shù);(2)若∠C=30°,求∠ADC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com