【題目】如圖,在平面直角坐標(biāo)系中,點、點在半徑為上,上一動點,軸上一定點,當(dāng)點點逆時針運動到點時,點的運動路徑長是(  )

A.B.C.D.

【答案】A

【解析】

結(jié)合圖形及tanDPC=tan30°=,且D為定點,分析動點P與動點C運動具有相關(guān)性,其運動的路徑均為圓弧,長度比為對應(yīng)線段的比,求出點P的運動弧長即可求解.

解:連接MA,MBAB,過點MAB的垂線交ABN,則AN=BN=AB=,而MA=MB=,

在直角三角形AMN中,∵sinAMN=

∴∠AMN=60°,故∠AMB=120°,

P在圓上從點逆時針運動到點時,其所走的弧長為

PDC中,,故tan= ,且結(jié)合圖形及P、C兩點的相關(guān)性,知PC的運動路徑均為圓弧,且路徑長度比為其對應(yīng)得線段的比,即為,故點C的運動路徑長為:

關(guān)于點C的路徑簡證:如圖連接DM,以DM為直角邊,構(gòu)造一個直角三角形DME,使∠DME=30°,∠MDE90°,連接CE,則,而易知∠PDM=CDE,所以PDMCDE,故有,因此得到CE=PM=1,而通過構(gòu)造知點E為定點,故點C的路徑為以點E為圓心,1為半徑的圓。

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠B90°,ABBC12cm,點D從點A出發(fā)沿邊AB2cm/s的速度向點B移動,移動過程中始終保持DEBC,DFAC(點E、F分別在AC、BC上).設(shè)點D移動的時間為t秒.

1)試判斷四邊形DFCE的形狀,并說明理由;

2)當(dāng)t為何值時,四邊形DFCE的面積等于20cm2?

3)如圖2,以點F為圓心,FC的長為半徑作⊙F,在運動過程中,當(dāng)⊙F與四邊形DFCE只有1個公共點時,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到一批防護服生產(chǎn)任務(wù),按要求15天完成,已知這批防護服的出廠價為每件80元,為按時完成任務(wù),該企業(yè)動員放假回家的工人及時返回加班趕制.該企業(yè)第天生產(chǎn)的防護服數(shù)量為件,之間的關(guān)系可以用圖中的函數(shù)圖象來刻畫.

1)直接寫出的函數(shù)關(guān)系式________;

2)由于疫情加重,原材料緊缺,防護服的成本前5天為每件50元,從第6天起每件防護服的成本比前一天增加2元,設(shè)第天創(chuàng)造的利潤為元,直接利用(1)的結(jié)論,求之間的函數(shù)表達式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象與反比例函數(shù)y的圖象相交于AB兩點,其中點A的坐標(biāo)為(﹣14),點B的坐標(biāo)為(4n).

1)求這兩個函數(shù)的表達式;

2)根據(jù)圖象,直接寫出滿足k1x+bx的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,的直徑,為圓周上兩點,且,過點,交的延長線于點

1)求證:切線;

2)填空:①當(dāng)四邊形為菱形,則的度數(shù)為________

②當(dāng)時,四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點叫做格點.四邊形的頂點在格點上,點是邊邊上的一點.請選擇適當(dāng)?shù)母顸c,用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由.

1)①過邊于;

②過點;

③在上作線段

2)在(1)的條件下,連,若邊上的動點,在網(wǎng)格中求作一條線段等于的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)購買甲、乙兩種樹苗進行綠化,購買一棵甲種樹苗的價錢比購買一棵乙種樹苗的價錢多 10 元錢,已知購買 20 棵甲種樹苗、30 棵乙種樹苗共需 1 200 元錢.

1)求購買一棵甲種、一棵乙種樹苗各多少元?

2)社區(qū)決定購買甲、乙兩種樹苗共 400 棵,總費用不超過 10 600 元,那么該社區(qū)最多可以購買多少棵甲種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE90°,以CEBC為邊作平行四邊形CEFB,連CD、CF

1)如圖1,當(dāng)E、D分別在ACAB上時,求證:CDCF

2)如圖2,△ADE繞點A旋轉(zhuǎn)一定角度,判斷(1)中CDCF的數(shù)量關(guān)系是否依然成立,并加以證明;

3)如圖3AE,AB,將△ADEA點旋轉(zhuǎn)一周,當(dāng)四邊形CEFB為菱形時,直接寫出CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計,現(xiàn)從該校隨機抽取n名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)參與問卷調(diào)查的每名學(xué)生只能選擇其中一項,并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:

補全條形統(tǒng)計圖;

若該校共有學(xué)生2400名,試估計該校喜愛看電視的學(xué)生人數(shù).

若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,求恰好抽到2名男生的概率.

查看答案和解析>>

同步練習(xí)冊答案