【題目】如圖,在中,,點(diǎn)是邊的中點(diǎn),,垂足為點(diǎn),延長與邊交于點(diǎn).
求:(1)的正切值;
(2)線段的長.
【答案】(1);(2).
【解析】
(1)由Rt△ABC,且CF垂直于BD,利用同角的余角相等得到∠ACE=∠CBD,根據(jù)AC的長確定出CD的長,利用銳角三角函數(shù)定義求出所求即可;
(2)過點(diǎn)E作EH⊥AC,垂足為點(diǎn)H,在Rt△EHA中,利用銳角三角函數(shù)定義表示出tanA,進(jìn)而表示出AE,在Rt△CEH中,利用銳角三角函數(shù)定義表示出CH,由CH+AH表示出AC,根據(jù)已知AC的長求出k的值,即可確定出所求.
(1)∵∠ACB=90°,
∴∠ACE+∠BCE=90°,
又∵CF⊥BD,
∴∠CFB=90°,
∴∠BCE+∠CBD=90°,
∴∠ACE=∠CBD,
∵AC=4且D是AC的中點(diǎn),
∴CD=2,
又∵BC=3,
在Rt△BCD中,∠BCD=90°.
∴tan∠CBD=,
∴tan∠ACE=tan∠CBD;
(2)過點(diǎn)E作EH⊥AC,垂足為點(diǎn)H,
在Rt△EHA中,∠EHA=90°,
∴tanA=,
∵BC=3,AC=4,
在Rt△ABC中,∠ACB=90°,
∴tanA=,
∴,
設(shè)EH=3k,AH=4k,
∵,即,
∴AE=5k,
在Rt△CEH中,∠CHE=90°,
∴tan∠ECA=,
∴CH=,
∴AC=AH+CH=,
解得:,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:將一個(gè)大于0的自然數(shù),去掉其個(gè)位數(shù)字,再把剩下的數(shù)加上原數(shù)個(gè)位數(shù)字的4倍,如果得到的和能被13整除,則稱這個(gè)數(shù)是“一刀兩斷”數(shù),如果和太大無法直接觀察出來,就再次重復(fù)這個(gè)過程繼續(xù)計(jì)算,例如,所以55263是“一刀兩斷”數(shù).,所以3247不是“一刀兩斷”數(shù).
(1)判斷5928是否為“一刀兩斷”數(shù):_____(填是或否),并證明任意一個(gè)能被13整除的數(shù)是“一刀兩斷”數(shù);
(2)對于一個(gè)“一刀兩斷”數(shù)均為正整數(shù)),規(guī)定.若的千位數(shù)字滿是,千位數(shù)字與十位數(shù)字相同,且能被65整除,求出所有滿足條件的四位數(shù)中,的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象如圖,下列結(jié)論:①;②;③當(dāng)時(shí),;④;⑤若,且,.其中正確的結(jié)論的個(gè)數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0;②a-b+c<0;③2a=b;④4a+2b+c>0;⑤若點(diǎn)(-2,y1)和(-,y2)在該圖象上,則y1>y2. 其中正確的結(jié)論個(gè)數(shù)是 ( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒感染的肺炎疫情牽動(dòng)著全國人民的心,來自全國四面八方的救援物資快速向疫區(qū)匯聚.我省某食品公司向武漢捐獻(xiàn)一批飲用水和蔬菜共320件,一件飲用水與一件蔬菜價(jià)格的比是2:5,飲用水總價(jià)4萬元,蔬菜總價(jià)6萬元.請解答下列問題:
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種型號的貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往受災(zāi)地區(qū)某中學(xué).已知每輛甲型貨車最多可裝飲用水40件和蔬菜10件,每輛乙型貨車最多可裝飲用水和蔬菜各20件,則該單位安排甲、乙兩種貨車時(shí)有幾種方案?請你幫助設(shè)計(jì)出來;
(3)在(2)的條件下,如果甲型貨車每輛需付運(yùn)費(fèi)400元,乙型貨車每輛需付運(yùn)費(fèi)360元,該單位應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界衛(wèi)生組織通報(bào)說,沙特阿拉伯報(bào)告新增5例中東呼吸系統(tǒng)綜合征冠狀病毒(新型冠狀病毒)確診病例.全球新型冠狀病毒確診病例已達(dá)176例,其中死亡74例.冠狀病毒顆粒的直徑60-200nm,平均直徑為100nm,新型冠狀病毒直徑為178nm,呈球形或橢圓形,具有多形性.如果1nm=10-9米,那么新型冠狀病毒的半徑約為( )米
A.1.00×10-7B.1.78×10-7C.8.90×10-8D.5.00×10-8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年全國兩會(huì)于3月5日在人民大會(huì)堂開幕,某社區(qū)為了解居民對此次兩會(huì)的關(guān)注程度,在全社區(qū)范圍內(nèi)隨機(jī)抽取部分居民進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把居民對兩會(huì)的關(guān)注程度分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下不完整的統(tǒng)計(jì)圖:
請結(jié)合圖表中的信息,解答下列問題:
(1)此次調(diào)查一共隨機(jī)抽取了_____名居民;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中,“很強(qiáng)”所對應(yīng)扇形圓心角的度數(shù)為_____;
(4)若該社區(qū)有1500人,則可以估計(jì)該社區(qū)居民對兩會(huì)的關(guān)注程度為“淡薄”層次的約有 _____人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com