請寫出一個開口向上,與y軸交點的縱坐標(biāo)為2的拋物線的函數(shù)表達式 .

(答案不唯一).

【解析】

試題分析:∵開口向上,∴,∵與y軸的交點縱坐標(biāo)為2,∴,∴拋物線的解析式可以為:(答案不唯一).故答案為:(答案不唯一).

考點:1.二次函數(shù)的性質(zhì);2.開放型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級上學(xué)期第二次質(zhì)量抽測數(shù)學(xué)試卷(解析版) 題型:選擇題

下列方程是一元二次方程的是 ( )

A.x2-6x+2 B.2x2-y+1=0 C.x2=0 D.+ x=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚州市寶應(yīng)縣九年級上學(xué)期期末測試數(shù)學(xué)試卷(解析版) 題型:填空題

已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:

x

-1

0

1

2

3

4

y

10

5

2

1

2

5

若A(m,y1),B(m+1,y2)兩點都在該函數(shù)的圖象上,當(dāng)m= 時,y1=y2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省鹽城市鹽都區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

【問題背景】

已知:l1∥l2∥l3∥l4,平行線l1與l2、l2與l3、l3與l4之間的距離分別為d1、d2、d3,且d1=d3=1,d2=2.我們把四個頂點分別在l1、l2、l3、l4這四條平行線上的四邊形稱為“格線四邊形”.

【問題探究】

(1)如圖1,正方形ABCD為“格線四邊形”,則正方形ABCD的邊長為_ _.

(2)矩形ABCD為“格線四邊形”,其長:寬=2:1,求矩形ABCD的寬.

【問題拓展】

(3)如圖1,EG過正方形ABCD的頂點D且垂直l1于點E,分別交l2,l4于點F,G.將∠AEG繞點A順時針旋轉(zhuǎn)30°得到∠AE′D′(如圖2),點D′在直線l3上,以AD′為邊在E′D′左側(cè)作菱形AB′C′D′,使B′,C′分別在直線l2,l4上,求菱形AB′C′D′的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省鹽城市鹽都區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分8分)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(―2,1),B(-1,4),C(-3,2).

(1)以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A1B1C1,并直接寫出C1點坐標(biāo);

(2)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(1)的變化后點D的對應(yīng)點D1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省鹽城市鹽都區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos A的值等于 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省鹽城市鹽都區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

一個布袋里裝有5個球,其中3個紅球,2個白球,每個球除顏色外其他完全相同,從中任意摸出一個球,是紅球的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省蘇州市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知α、β方程x2+2x-5=0的兩根,則α2+αβ+3α+β的值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年黑龍江省五常市九年級上學(xué)期12月階段性測試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖:拋物線y=-x2+bx+c交x軸于A、B,直線y=x+2過點A,交y軸于C,交拋物線于D,且D的縱坐標(biāo)為5.

(1)求拋物線解析式;

(2)點P為拋物線在第一象限的圖象上一點,直線PC交x軸于點E,若PC=3CE,求點P的坐標(biāo);

(3)在(2)的條件下,點Q為x軸上一點,把△PCQ沿CQ翻折,點P剛好落在x軸上點G處,求Q點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案