【題目】如圖,已知正方形ABCD的邊長為6,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現(xiàn)在有如下4個結論:①;②;③;④在以上4個結論中,正確的有( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根據(jù)正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,進而求出△BEF的面積,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷③是錯誤的.
解:由折疊可知,DF=DC=DA,∠DFE=∠C=90,
∴∠DFG=∠A=90,
在Rt△ADG與Rt△FDG中
∴Rt△ADG≌Rt△FDG(HL),故①正確;
∵正方形邊長為6,
∴BE=EC=EF=3,
設AG=FG=x,則EG=x+3,BG=6x,
由勾股定理得:,
即:,
解得:;
∴AG=GF=2,BG=4,BG=2AG,故②正確;
BE=EF=3,△BEF是等腰三角形,易知△GED不是等腰三角形,故③錯誤;
S△GBE=,,S△BEF,故④正確。
故正確的有①②④,選C.
科目:初中數(shù)學 來源: 題型:
【題目】某校開設了“3D”打印、數(shù)學史、詩歌欣賞、陶藝制作四門校本課程,為了解學生對這四門校本課程的喜愛情況,對學生進行了隨機問卷調查(問卷調查表如圖所示),將調查結果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計圖.
請您根據(jù)圖中提供的信息回答下列問題:
(1)統(tǒng)計圖中的a= ,b= ;
(2)“D”對應扇形的圓心角為 度;
(3)根據(jù)調查結果,請您估計該校1200名學生中最喜歡“數(shù)學史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學習,若每人從“A”、“B”、“C”三門校本課程中隨機選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:
圖1 圖2 圖3
(1)初步思考:
如圖1, 在中,已知,BC=4,N為BC上一點且,試說明:
(2)問題提出:
如圖2,已知正方形ABCD的邊長為4,圓B的半徑為2,點P是圓B上的一個動點,求的最小值.
(3)推廣運用:
如圖3,已知菱形ABCD的邊長為4,∠B﹦60°,圓B的半徑為2,點P是圓B上的一個動點,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點D在EG上運動,則△CDF周長的最小值為__.
查看答案和解析>>
科目:
來源: 題型:【題目】如圖,△ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,點,點.
(1)畫出關于軸的對稱圖形,并寫出點的對稱點的坐標;
(2)若點在軸上,連接、,則的最小值是 ;
(3)若直線軸,與線段、分別交于點、(點不與點重合),若將沿直線翻折,點的對稱點為點,當點落在的內部(包含邊界)時,點的橫坐標的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓圓O的直徑,C是弧AB的中點,M是弦AC的中點,CH⊥BM,垂足為H.求證
(1)∠AHO=90°
(2)求證:CH=AHOH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2+mx+n的圖像上,當x1=1、x2=3時,y1=y2.
(1)若P(a,b1),Q(3,b2)是函數(shù)圖象上的兩點,b1>b2,則實數(shù)a的取值范圍是( )
A.a<1 B.a>3 C.a<1或a>3 D.1<a<3
(2)若拋物線與x軸只有一個公共點,求二次函數(shù)的表達式.
(3)若對于任意實數(shù)x1、x2都有y1+y2≥2,則n的范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個圓和兩個正六邊形,.的6個頂點都在圓周上,的6條邊都和圓相切(我們稱,分別為圓的外切正六邊形和內接正六邊形),若設,的周長分別為,,圓的半徑為,則___;____;正六邊形,的面積比的值是____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com