【題目】市化工材料經(jīng)銷公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=45時(shí),y=10;x=55時(shí),y=90.在銷售過程中,每天還要支付其他費(fèi)用500元.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?
【答案】(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)當(dāng)銷售單價(jià)為60元時(shí),該公司日獲利最大為1900元.
【解析】
(1)根據(jù)y與x成一次函數(shù)解析式,設(shè)為y=kx+b,把x與y的兩對(duì)值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;
(2)根據(jù)利潤(rùn)=單個(gè)利潤(rùn)×銷售量-500列出W關(guān)于x的二次函數(shù)解析式即可;
(3)利用二次函數(shù)的性質(zhì)求出W的最大值,以及此時(shí)x的值即可.
(1)設(shè)y=kx+b,
∵x=45時(shí),y=10;x=55時(shí),y=90,
∴,
解得:k=﹣2,b=200,
∴y=﹣2x+200(30≤x≤60);
(2)∵售價(jià)為x元/千克,進(jìn)價(jià)為30元/千克,日銷量y=﹣2x+200,每天支付其他費(fèi)用500元,
∴W=(x﹣30)(﹣2x+200)﹣500=﹣2x2+260x﹣6500,
(3)∵W=﹣2x2+260x﹣6500=﹣2(x﹣65)2+1950,
∴拋物線的對(duì)稱軸為x=65,
∵-2<0,
∴拋物線開口向下,x<65時(shí),y隨x的增大而增大,
∵30≤x≤60,
∴x=60時(shí),w有最大值為-2(60-65)2+1950=1900(元),
∴當(dāng)銷售單價(jià)為60元時(shí),該公司日獲利最大為1900元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組作“用頻率估計(jì)概率的實(shí)驗(yàn)”時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )
A.擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4
B.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
C.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅色
D.暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=2,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)癮低齡化已引起社會(huì)各界的高度關(guān)注,有關(guān)部門在全國(guó)范圍內(nèi)對(duì)12~35歲的網(wǎng)癮人群進(jìn)行了隨機(jī)抽樣查,得到了如下兩個(gè)不定整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)求本次調(diào)查了多少名網(wǎng)癮人員?
(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖,在扇形統(tǒng)計(jì)圖中,18~23歲部分的圓心角的度數(shù)為 ;
(3)目前我國(guó)12﹣35歲網(wǎng)癮人數(shù)約為3000萬,請(qǐng)估計(jì)其中12﹣23歲的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=4,點(diǎn)E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(m﹣2)x﹣=0.
(1)求證:無論m為何值,方程總有兩個(gè)不相等實(shí)數(shù)根.
(2)設(shè)方程的兩實(shí)數(shù)根為x1,x2,且滿足(x1+x2)2=|x1|﹣|x2|+2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一根長(zhǎng)為米的鐵絲折成一個(gè)矩形,矩形的一邊長(zhǎng)為米,面積為S米,
(1)求S關(guān)于的函數(shù)表達(dá)式和的取值范圍
(2)為何值時(shí),S最大?最大為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),連接BE,CD,F(xiàn)為BE的中點(diǎn),連接AF.
(1)如圖①,當(dāng)∠BAE=90°時(shí),求證:CD=2AF;
(2)當(dāng)∠BAE≠90°時(shí),(1)的結(jié)論是否成立?請(qǐng)結(jié)合圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對(duì)應(yīng)點(diǎn)I'的坐標(biāo)為( 。
A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com