【題目】如圖,在中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交邊BC于點(diǎn)D,過點(diǎn)D作CA的平行線,交邊AB于點(diǎn)E.
(1)求線段DE的長;
(2)取線段AD的中點(diǎn)M,聯(lián)結(jié)BM,交線段DE于點(diǎn)F,延長線段BM交邊AC于點(diǎn)G,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小麗為更好的掌握一元二次方程根的判斷情況,兩人玩一個(gè)游戲:
在一個(gè)不透明口袋中裝有分別標(biāo)有 -1,0,1,2的四個(gè)小球,除了數(shù)字不同之外,這些小球完全一樣.
(1)從中任取1球,此小球是非負(fù)數(shù)的概率是__________.
(2)小明從四球中任取兩球,數(shù)字和記為m,若一元二次方程有實(shí)根,小明贏,無實(shí)根小麗贏.這個(gè)游戲公平嗎?請(qǐng)你用樹狀圖或列舉法分別求出小明、小麗贏的概率,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.
(1)請(qǐng)問1輛甲種客車與1輛乙種客車的載客量分別為多少人?
(2)某學(xué)校組織240名師生集體外出活動(dòng),擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請(qǐng)給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn)
如圖①,在中,,點(diǎn)D是上一點(diǎn),沿折疊,使得點(diǎn)C恰好落在上的點(diǎn)E處.則的數(shù)量關(guān)系為______;________;
(2)問題解決
如圖②,若(1)中,其他條件不變,請(qǐng)猜想之間的關(guān)系,并證明你的結(jié)論;
(3)類比探究
如圖③,在四邊形中,,連接,點(diǎn)E是上一點(diǎn),沿折疊使得點(diǎn)D正好落在上的點(diǎn)F處,若,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,.是邊的中點(diǎn),點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)、不重合),過點(diǎn)作,交邊于點(diǎn).聯(lián)結(jié)、,設(shè).
(1)當(dāng)時(shí),求的面積;
(2)如果點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,點(diǎn)恰好落在邊上時(shí),求的值;
(3)以點(diǎn)為圓心,長為半徑的圓與以點(diǎn)為圓心,長為半徑的圓相交,另一個(gè)交點(diǎn)恰好落在線段上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象由函數(shù)的圖象平移得到,且經(jīng)過點(diǎn)(1,2).
(1)求這個(gè)一次函數(shù)的解析式;
(2)當(dāng)時(shí),對(duì)于的每一個(gè)值,函數(shù)的值大于一次函數(shù)的值,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2019年某中學(xué)舉行的冬季陽徑運(yùn)動(dòng)會(huì)上,參加男子跳高的15名運(yùn)動(dòng)員的成績?nèi)绫硭荆?/span>
成績(m) | 1.80 | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 |
人數(shù) | 1 | 2 | 4 | 3 | 3 | 2 |
這些運(yùn)動(dòng)員跳高成績的中位數(shù)和眾數(shù)分別是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線11:y=k1x+3分別與x軸,y軸交于A(﹣3,0),B兩點(diǎn),與直線l2:y=k2x交于點(diǎn)C,S△AOC=9.
(1)求tan∠BAO的值;
(2)求出直線l2的解析式;
(3)P為線段AC上一點(diǎn)(不含端點(diǎn)),連接OP,一動(dòng)點(diǎn)H從點(diǎn)O出發(fā),沿線段OP以每秒1個(gè)單位長度的速度運(yùn)動(dòng)到P,再沿線段PC以每秒個(gè)單位長度的速度運(yùn)動(dòng)到點(diǎn)C后停止,請(qǐng)直接寫出點(diǎn)H在整個(gè)運(yùn)動(dòng)過程的最少用時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的⊙O與相交于點(diǎn),過點(diǎn)作⊙O的切線交于點(diǎn).
(1)求證:;
(2)若⊙O的半徑為,,求的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com