【題目】筒車是我國(guó)古代利用水力驅(qū)動(dòng)的灌溉工具,唐代陳廷章在《水輪賦》中寫道:“水能利物,輪乃曲成”.如圖,半徑為的筒車按逆時(shí)針方向每分鐘轉(zhuǎn)圈,筒車與水面分別交于點(diǎn)、,筒車的軸心距離水面的高度長(zhǎng)為,簡(jiǎn)車上均勻分布著若干個(gè)盛水筒.若以某個(gè)盛水筒剛浮出水面時(shí)開始計(jì)算時(shí)間.
(1)經(jīng)過多長(zhǎng)時(shí)間,盛水筒首次到達(dá)最高點(diǎn)?
(2)浮出水面3.4秒后,盛水筒距離水面多高?
(3)若接水槽所在直線是的切線,且與直線交于點(diǎn),.求盛水筒從最高點(diǎn)開始,至少經(jīng)過多長(zhǎng)時(shí)間恰好在直線上.(參考數(shù)據(jù):,,)
【答案】(1)27.4秒;(2)0.7m;(3)7.6秒
【解析】
(1)先根據(jù)筒車筒車每分鐘旋轉(zhuǎn)的速度計(jì)算出筒車每秒旋轉(zhuǎn)的速度,再利用三角函數(shù)確定,最后再計(jì)算出所求時(shí)間即可;
(2)先根據(jù)時(shí)間和速度計(jì)算出,進(jìn)而得出,最后利用三角函數(shù)計(jì)算出,從而得到盛水筒距離水面的高度;
(3)先確定當(dāng)在直線上時(shí),此時(shí)是切點(diǎn),再利用三角函數(shù)得到,
,從而計(jì)算出,最后再計(jì)算出時(shí)間即可.
(1)如圖1,由題意得,筒車每秒旋轉(zhuǎn).
連接,在中,,所以.
所以(秒).
答:盛水筒首次到達(dá)最高點(diǎn)所需時(shí)間為27.4秒.
(2)如圖2,盛水筒浮出水面3.4秒后,此時(shí).
所以.
過點(diǎn)作,垂足為,在中,.
.
答:此時(shí)盛水筒距離水面的高度.
(3)如圖3,因?yàn)辄c(diǎn)在上,且與相切,
所以當(dāng)在直線上時(shí),此時(shí)是切點(diǎn).
連接,所以.
在中,,所以.
在中,,所以.
所以.
所以需要的時(shí)間為(秒).
答:從最高點(diǎn)開始運(yùn)動(dòng),7.6秒后盛水筒恰好在直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘人才,對(duì)應(yīng)聘者分別進(jìn)行閱讀能力、思維能力和表達(dá)能力三項(xiàng)測(cè)試,其中甲、乙兩人的成績(jī)?nèi)缦卤恚▎挝唬悍郑?/span>
項(xiàng)目人員 | 閱讀能力 | 思維能力 | 表達(dá)能力 |
甲 | 93 | 86 | 73 |
乙 | 95 | 81 | 79 |
(1)根據(jù)實(shí)際需要,公司將閱讀、思維和表達(dá)能力三項(xiàng)測(cè)試得分按3:5:2的比確定每人的最后成績(jī),若按此成績(jī)?cè)诩、乙兩人中錄用一人,誰將被錄用?
(2)公司按照(1)中的成績(jī)計(jì)算方法,將每位應(yīng)聘者的最后成績(jī)繪制成如圖所示的頻數(shù)分布直方圖(每組分?jǐn)?shù)段均包含左端數(shù)值,不包含右端數(shù)值,如最右邊一組分?jǐn)?shù)x為:85≤x<90),并決定由高分到低分錄用8名員工,甲、乙兩人能否被錄用?請(qǐng)說明理由,并求出本次招聘人才的錄用率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是用黑色棋子擺成的美麗圖案,按照這樣的規(guī)律擺下去,第10個(gè)這樣的圖案需要黑色棋子的個(gè)數(shù)為( )
A.148B.152C.174D.202
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館普通票價(jià)20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價(jià)600元/張,每次憑卡不再收費(fèi).
②銀卡售價(jià)150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y元.
(1)分別寫出選擇銀卡、普通票消費(fèi)時(shí),y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請(qǐng)求出點(diǎn)A、B、C的坐標(biāo);
(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫出選擇哪種消費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑為2的與軸的正半軸交于點(diǎn),點(diǎn)是上一動(dòng)點(diǎn),點(diǎn)為弦的中點(diǎn),直線與軸、軸分別交于點(diǎn)、,則面積的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,在公安部交通管理局部署下,全國(guó)各地交警都在大力開展|一盔一帶安全守護(hù)行動(dòng),為了解市民對(duì)騎電動(dòng)車戴頭盔的贊同情況,某課題小組隨機(jī)調(diào)查了部分市民,并根據(jù)調(diào)查結(jié)果繪制了尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上統(tǒng)計(jì)圖回答一下問題:
(1)這次調(diào)查的市民共_______人;
(2)若選擇的人數(shù)是選擇的人數(shù)的3倍,則扇形統(tǒng)計(jì)圖中,扇形的圓心角度數(shù)是______;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有80萬人,請(qǐng)估計(jì)安全意識(shí)淡薄(選擇D或E)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,是銳角,于點(diǎn),是的中點(diǎn),連接;若,則的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,
①設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)在研究函數(shù)(是常數(shù))時(shí),甲發(fā)現(xiàn)當(dāng)時(shí),函數(shù)有最小值;乙發(fā)現(xiàn)是方程的一個(gè)根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)時(shí),,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com