如圖,點P是∠AOB內(nèi)任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,PN+PM+MN的最小值是5cm,則∠AOB的度數(shù)是__________.
30°.
【考點】軸對稱-最短路線問題.
【分析】分別作點P關(guān)于OA、OB的對稱點C、D,連接CD,分別交OA、OB于點M、N,連接OC、OD、PM、PN、MN,由對稱的性質(zhì)得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,證出△OCD是等邊三角形,得出∠COD=60°,即可得出結(jié)果.
【解答】解:分別作點P關(guān)于OA、OB的對稱點C、D,連接CD,
分別交OA、OB于點M、N,連接OC、OD、PM、PN、MN,如圖所示:
∵點P關(guān)于OA的對稱點為D,關(guān)于OB的對稱點為C,
∴PM=DM,OP=OD,∠DOA=∠POA;
∵點P關(guān)于OB的對稱點為C,
∴PN=CN,OP=OC,∠COB=∠POB,
∴OC=OP=OD,∠AOB=∠COD,
∵PN+PM+MN的最小值是5cm,
∴PM+PN+MN=5,
∴DM+CN+MN=5,
即CD=5=OP,
∴OC=OD=CD,
即△OCD是等邊三角形,
∴∠COD=60°,
∴∠AOB=30°.
故答案為:30°.
【點評】本題考查了軸對稱的性質(zhì)、最短路線問題、等邊三角形的判定與性質(zhì);熟練掌握軸對稱的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,如果把△ABC的頂點A先向下平移3格,再向左平移1格到達A′點,連接A′B,則線段A′B與線段AC的關(guān)系是( )
A.垂直 B.相等 C.平分 D.平分且垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,有一塊直角三角形紙片,兩直角邊AC=3cm,BC=4cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列語句中正確的有( )句
①關(guān)于一條直線對稱的兩個圖形一定能重合;
②兩個能重合的圖形一定關(guān)于某條直線對稱;
③一個軸對稱圖形不一定只有一條對稱軸;
④兩個軸對稱圖形的對應(yīng)點一定在對稱軸的兩側(cè).
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com