17.如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線.
(2)若圓心O到弦DB的距離為1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)

分析 (1)首先連接OD,由BC是⊙O的切線,可得∠ABC=90°,又由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線;
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長,∠BOD的度數(shù),又由S陰影=S扇形OBD-S△BOD,即可求得答案.

解答 (1)證明:連接OD,
∵BC是⊙O的切線,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵點D在⊙O上,
∴CD為⊙O的切線;

(2)解:過點O作OF⊥BD于點F,
在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF=$\sqrt{3}$,
∵OF⊥BD,
∴BD=2BF=2$\sqrt{3}$,∠BOD=2∠BOF=120°,
∴S陰影=S扇形OBD-S△BOD=$\frac{120π×{2}^{2}}{360}$-$\frac{1}{2}$×2$\sqrt{3}$×1=$\frac{4}{3}$π-$\sqrt{3}$.

點評 此題考查了切線的判定與性質、垂徑定理以及扇形的面積.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結合思想的應用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

7.由4x-9y+6=0,用y表示x,得x=$\frac{9}{4}$y-$\frac{3}{2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.隨著市場競爭日益激烈,某商品一個月內(nèi)連續(xù)兩次降價,第一次降價10%,第二次再降價10%后,售價為810元,則原售價為(  )
A.900元B.1000元C.960元D.920元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

5.如圖,在離地面高度5米處引拉線固定電線桿,拉線和地面成50°角,則拉線AC的長為6.5米(精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.如圖,邊長為a的正六邊形螺帽在桌面上滾動(沒有滑動)一周,則它的中心O點所經(jīng)過的路徑長為2πa.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

2.若∠A度數(shù)是正六邊形的一個內(nèi)角度數(shù)的$\frac{1}{2}$,則cosA=$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

9.兩個完全相同的三角形紙片,在平面直角坐標系中的擺放位置如圖所示,點P與點P′是一對對應點,若點P的坐標為(a,b),則點P′的坐標為( 。
A.(3-a,-b)B.(b,3-a)C.(a-3,-b)D.(b+3,a)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.先化簡,再求值:$\frac{x}{{x}^{2}-4}$$•\frac{x+2}{{x}^{2}-3x}$$+\frac{1}{x-2}$+1,其中整數(shù)x與2、3構成△ABC的三邊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.(1).如圖1,小明和小亮在研究一個數(shù)學問題:已知AB∥CD,AB和CD都不經(jīng)過點P,探索∠P與∠A,∠C的數(shù)量關系.

小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A(兩直線平行,內(nèi)錯角相等,)
∵PQ∥AB,AB∥CD.
∴PQ∥CD(平行于同一條直線的兩條直線互相平行)             
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請在上面證明過程的過程的橫線上,填寫依據(jù);兩人的證明過程中,完全正確的是小明.
(2)應用:
在圖2中,若∠A=120°,∠C=140°,則∠APC的度數(shù)為100°;
(3)拓展:
在圖3中,探索∠APC與∠A,∠C的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案