【題目】在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.
(1)求拋物線的表達式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標;
②如圖2,過點O,P的直線y=kx交AC于點E,若PE∶OE=3∶8,求k的值.
【答案】(1);(2)①,②或
【解析】
(1)由直線的解析式y=x+4易求點A和點C的坐標,把A和C的坐標分別代入y=x2+bx+c求出b和c的值即可得到拋物線的解析式;
(2)①若以AP,AO為鄰邊的平行四邊形的第四個頂點Q恰好也在拋物線上,則PQ∥AO,再根據(jù)拋物線的對稱軸可求出點P的橫坐標,由(1)中的拋物線解析式,進而可求出其縱坐標,問題得解;
②過P點作PF∥OC交AC于點F,因為PF∥OC,所以△PEF∽△OEC,由相似三角形的性質(zhì):對應邊的比值相等可求出PF的長,進而可設點點F(x,x+4),利用(x2x+4)(x+4)=,可求出x的值,解方程求出x的值可得點P的坐標,代入直線y=kx即可求出k的值.
解:(1)∵直線y=x+4經(jīng)過A,C兩點,
∴A(-4,0),C(0,4).
又∵拋物線過A,C兩點,
∴解得,
∴拋物線的表達式為y=-x2-x+4.
(2)①∵y=-x2-x+4,
∴拋物線的對稱軸是直線x=-1.
∵以AP,AO為鄰邊的平行四邊形的第四個頂點Q恰好也在拋物線上,
∴PQ∥AO,PQ=AO=4
∵P,Q都在拋物線上,
∴P,Q關于直線x=-1對稱.
∴P點的橫坐標是-3,
∴當x=-3時,y=-×(-3)2-(-3)+4=
∴P點的坐標是(-3,).
②過點P作PF∥OC交AC于點F,
∵PF∥OC,
∴△PEF∽△OEC
∴=
又∵=,OC=4,
∴PF=
設點F(x,x+4),
∴P(x,-x2-x+4)
∴(-x2-x+4)-(x+4)=
解得x1=-1,x2=-3
∴P點坐標是(-1,)或(-3,).
又∵點P在直線y=kx上,
∴k=-或k=-.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E,F是直線BD上的兩點,DE=BF.
(1)求證:四邊形AFCE是平行四邊形.
(2)若BD⊥AD,AB=5,AD=3,四邊形AFCE是矩形,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司用6000元購進A,B兩種電話機25臺,購買A種電話機與購買B種電話機的費用相等.已知A種電話機的單價是B種電話機單價的1.5倍.
(1)求A,B兩種電話機的單價各是多少?
(2)若計劃用不超過8000元的資金再次購進A,B兩種話機共30臺,已知A,B兩種電話機的進價不變,求最多能購進多少臺A種電話機?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,以AB為直徑的半圓O經(jīng)過點C,D.AC與BD相交于點E,CD2=CE·CA,分別延長AB,DC相交于點P,PB=BO,CD=2.則BO的長是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,點從點出發(fā),按的方向在和上移動.記,點到直線的距離為,則關于的函數(shù)大致圖象是
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知是圓的直徑,是圓上一點,的平分線交于點,交的切線于點,過點作,交的延長線于點.
(1)求證:是的切線;
(2)若,,
①求的值;②若點為上一點,求最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學就“戲曲進校園”活動的喜愛情況進行了隨機調(diào)查,對收集的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖所提供的信息解答下列問題:(圖中表示“很喜歡”,表示“喜歡”,表示“一般”,表示“不喜歡”)
(1)被調(diào)查的總?cè)藬?shù)是_________,扇形統(tǒng)計圖中部分所對應的扇形圓心角的度數(shù)為_________;
(2)補全條形統(tǒng)計圖;
(3)在抽取的類5人中,剛好有甲、乙、丙3個女生和丁、戊2個男生,從中隨機抽取兩個同學擔任兩角色,用畫樹狀圖或列表法求出抽到的兩個學生性別不相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是正方形ABCD兩條對角線的交點,分別延長CO到點G,OC到點E,使OG=2OD、OE=2OC,然后以OG、OE為鄰邊作正方形OEFG.
(1)如圖1,若正方形OEFG的對角線交點為M,求證:四邊形CDME是平行四邊形.
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn),得到正方形OE′F′G′,如圖2,連接AG′,DE′,求證:AG′=DE′,AG′⊥DE′;
(3)在(2)的條件下,正方形OE′F′G′的邊OG′與正方形ABCD的邊相交于點N,如圖3,設旋轉(zhuǎn)角為α(0°<α<180°),若△AON是等腰三角形,請直接寫出α的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com