如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過點(diǎn)F且與y軸平行.直線y=-x+m過點(diǎn)C,交y軸于點(diǎn)D.
(1)求拋物線的解析式;
(2)點(diǎn)K為線段AB上一動點(diǎn),過點(diǎn)K作x軸的垂線,交直線CD于點(diǎn)H,交拋物線于點(diǎn)G,求線段HG長度的最大值;
(3)在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
補(bǔ)全證明過程
已知:如圖,∠1=∠2,∠C=∠D.
求證:∠A=∠F.
證明:∵∠1=∠2(已知),
又∠1=∠DMN(___________________),
∴∠2=∠_________(等量代換).
∴DB∥EC( ).
∴ ( )
∵∠C=∠D(已知)
∴ ( )
∴ ( )
∴∠A=∠F( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
拋物線與y軸交于點(diǎn)A,頂點(diǎn)為B,對稱軸BC與x軸交于點(diǎn)C.點(diǎn)P在拋物線上,直線PQ//BC交x軸于點(diǎn)Q,連接BQ.
(1)若含45°角的直角三角板如圖所示放置,其中一個頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在BQ上,另一個頂點(diǎn)E在PQ上,求直線BQ的函數(shù)解析式;
(2)若含30°角的直角三角板的一個頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在直線BQ上(點(diǎn)D不與點(diǎn)Q重合),另一個頂點(diǎn)E在PQ上,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,拋物線經(jīng)過A(-1,0),C(2,)兩點(diǎn),
與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動點(diǎn) (不與點(diǎn)B重合),點(diǎn)Q在線段MB上移動,且∠MPQ=45°,設(shè)線段OP=x,MQ=,求y2與x的函數(shù)關(guān)系式,
并直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
相鄰兩邊長分別為2和3的平行四邊形,若邊長保持不變,則它可以變?yōu)椋?nbsp; )
A. 矩形 B. 菱形 C. 正方形 D. 梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于二次函數(shù),以下結(jié)論:① 拋物線交軸有兩個不同的交點(diǎn);②不論k取何值,拋物線總是經(jīng)過一個定點(diǎn);③設(shè)拋物線交軸于A、B兩點(diǎn),若AB=1,則k=9;;④ 拋物線的頂點(diǎn)在圖像上.其中正確的序號是( )
A.①②③④ B.②③ C.②④ D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知⊙O是正方形ABCD的外接圓,點(diǎn)E是上任意一點(diǎn),則∠BEC 的度數(shù)為 ( )
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
點(diǎn)A(-1,0)B(4,0)C(0,2)是平面直角坐標(biāo)系上的三點(diǎn)。
① 如圖1先過A、B、C作△ABC,然后在在軸上方作一個正方形D1E1F1G1,
使D1E1在AB上, F1、G1分別在BC、AC上
② 如圖2先過A、B、C作圓⊙M,然后在軸上方作一個正方形D2E2F2G2,
使D2E2在軸上 ,F(xiàn)2、G2在圓上
③ 如圖3先過A、B、C作拋物線,然后在軸上方作一個正方形D3E3F3G3,
使D3E3在軸上, F3、G3在拋物線上
請比較 正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3 的面積大小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com