【題目】在坡度為的山坡上立有一塊大型廣告牌,如圖,廣告牌底部點到山腳點的距離20米,某同學(xué)在離山坡腳4米的處(米)測得廣告牌頂部的仰角為,求廣告牌的高度.(結(jié)果保留整數(shù),參考數(shù)值:,,

【答案】廣告牌AB的高度約為8米.

【解析】

如下圖,延長AB,連接BC,在Rt△BCE中,根據(jù)坡度可求得BE的長,再在Rt△ADE中,利用正切值求得AE的長,從而得出AB的長.

延長ABCE于點E,

RtBCE中,CEB=90°

tan∠BCE= i =1,∴∠BCE=30°,BE=BC=10米,

RtADE中,AED=90°

DE=CE+CD≈21.3

tan40°=,

AE≈21.3×0.84≈17.9

AB=AE-BE≈17.9-10≈8(米)

答:廣告牌AB的高度約為8米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線y1=﹣x+4,y2x+b都與雙曲線y交于點A(13),這兩條直線分別與x軸交于BC兩點.

1)求k的值;

2)直接寫出當(dāng)x0時,不等式x+b的解集;

3)若點Px軸上,連接AP,且AP把△ABC的面積分成12兩部分,則此時點P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】富貴竹莖葉肥厚,觀賞價值高,又有“花開富貴,竹報平安,大吉大利”之意,深受廣大花友的喜愛.某花店抓住這個商機,第一次購進(jìn)兩種造型的富貴竹共300株.型富貴竹每盆成本4元,售價8元;型富貴竹每盆成本7元,售價10元.

1)如果第一次購進(jìn)富貴竹的金額為1500元,那么型富貴竹購進(jìn)了多少盆?

2)富貴竹開始售賣后,十分搶手,花店決定第二次購進(jìn)這兩種造型的富貴竹,它們的進(jìn)價不變.型富貴竹的進(jìn)貨量在第一次進(jìn)貨量的基礎(chǔ)上增加了,售價提高了;型富貴竹的售價和進(jìn)貨量不變.結(jié)果第二次共獲利2100元.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,坐標(biāo)原點O是菱形ABOC的一個頂點,邊OB落在x軸的負(fù)半軸上,且cosBOC=,頂點C的坐標(biāo)為(a4),反比例函數(shù)的圖象與菱形對角線AO交于D點,連接BD,當(dāng)BDx軸時,k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點、分別在上,連接,將沿折疊,使點落在邊上的點處,若有一邊垂直,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動適應(yīng)社會,促進(jìn)書本知識和生活經(jīng)驗的深度融合,我市某中學(xué)決定組織部分班級去赤壁開展研學(xué)旅行活動,在參加此次活動的師生中,若每位老師帶17個學(xué)生,還剩12個學(xué)生沒人帶;若每位老師帶18個學(xué)生,就有一位老師少帶4個學(xué)生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.

甲種客車

乙種客車

載客量/(人/輛)

30

42

租金/(元/輛)

300

400

學(xué)校計劃此次研學(xué)旅行活動的租車總費用不超過3100元,為了安全,每輛客車上至少要有2名老師.

(1)參加此次研學(xué)旅行活動的老師和學(xué)生各有多少人?

(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為   輛;

(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點B,

點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若ADE

的面積為3,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過兩點,與軸交于點,點為第一象限拋物線上一動點,

(1)求拋物線的解析式;

(2)如圖1,連接,交于點,當(dāng)時,求出點的坐標(biāo);

(3)如圖2,點的坐標(biāo)為,點軸正半軸上一點,,連接,是否存在點,使?若存在,請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某飛機場東西方向的地面 l 上有一長為 1km 的飛機跑道 MN(如圖),在跑道 MN的正西端 14.5 千米處有一觀察站 A.某時刻測得一架勻速直線降落的飛機位于點 A 的北偏西30°,且與點 A 相距 15 千米的 B 處;經(jīng)過 1 分鐘,又測得該飛機位于點 A 的北偏東 60°,且與點 A 相距 5千米的 C 處.

1)該飛機航行的速度是多少千米/小時?(結(jié)果保留根號)

2)如果該飛機不改變航向繼續(xù)航行,那么飛機能否降落在跑道 MN 之間?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案