【題目】古希臘數(shù)學(xué)家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數(shù)稱為“黃金分割”數(shù),把點G稱為線段的“黃金分割”點.如圖,在中,已知,,若D,E是邊的兩個“黃金分割”點,則的面積為( )
A.B.C.D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(教材呈現(xiàn))
下圖是華師版九年級上冊數(shù)學(xué)教材第79頁的部分內(nèi)容.
如圖,矩形的對角線、相交于點,、、、分別為、、、的中點,求證:四邊形是矩形.
請根據(jù)教材內(nèi)容,結(jié)合圖①,寫出完整的解題過程.
(結(jié)論應(yīng)用)
(1)在圖①中,若,,則四邊形的面積為__________;
(2)如圖②,在菱形中,,是其內(nèi)任意一點,連接與菱形各頂點,四邊形的頂點、、、分別在、、、上,,,且,若與的面積和為,則菱形的周長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(﹣6,0),點B(0,8),點C在線段AB上,點D在y軸上,將∠ABO沿直線CD翻折,使點B與點A重合.若點E在線段CD延長線上,且CE=5,點M在y軸上,點N在坐標(biāo)平面內(nèi),如果以點C、E、M、N為頂點的四邊形是菱形,那么點N有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富同學(xué)們的課余生活,冬威中學(xué)開展以“我最喜歡的課外活動小組”為主題的調(diào)查活動,圍繞在繪畫、剪紙、舞蹈、書法四類活動小組中,你最喜歡的哪一類?的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的條形統(tǒng)計圖,其中最喜歡繪畫小組的學(xué)生人數(shù)占所調(diào)查人數(shù)的,請你根據(jù)圖中提供的信息回答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生;
(2)請通過計算補全條形統(tǒng)計圖;
(3)若冬威中學(xué)共有800名學(xué)生,請你估計該中學(xué)最喜歡剪紙小組的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某條河的對岸邊C,D兩點間的距離,在河的岸邊與平行的直線上取兩點A,B,測得,,量得長為70米.求C,D兩點間的距離(參考數(shù)據(jù):,,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)居民掌握民法知識的情況,對社區(qū)內(nèi)的甲、乙兩個小區(qū)各500名居民進(jìn)行了測試,從中各隨機抽取50名居民的成績(百分制)進(jìn)行整理、描述、分析,得到部分信息:
a.甲小區(qū)50名居民成績的頻數(shù)直方圖如下(數(shù)據(jù)分成5組:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.圖中,70≤x<80組的前5名的成績是:79 79 79 78 77
c.圖中,80≤x<90組的成績?nèi)缦拢?/span>
82 | 83 | 84 | 85 | 85 | 86 | 86 | 86 | 86 | 86 |
86 | 86 | 86 | 87 | 87 | 87 | 88 | 88 | 89 | 89 |
d.兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上)、滿分人數(shù)如下表所示:
小區(qū) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 | 滿分人數(shù) |
甲 | 78.58 | 84.5 | a | b | 1 |
乙 | 76.92 | 79.5 | 90 | 40% | 4 |
根據(jù)以上信息,回答下列問題:
(1)求表中a,b的值;
(2)請估計甲小區(qū)500名居民成績能超過平均數(shù)的人數(shù);
(3)請盡量從多個角度,分析甲、乙兩個小區(qū)參加測試的居民掌握民法知識的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于A,與y軸交于B,拋物線經(jīng)過點A,且與y軸交于點C(0,4),P為x軸上一動點,按逆時針方向作CPE,使CPE∽AOB.
(1)求拋物線解析式.
(2)若點E落在拋物線上,求出點P的坐標(biāo).
(3)若ABE是直角三角形,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com