【題目】如圖,AB 是⊙ O 的直徑,點(diǎn) C 是⊙ O 上的一點(diǎn),點(diǎn) D 是弧 BC 的中點(diǎn),連接 AC, BD,過(guò)點(diǎn) D 作 AC 的垂線 EF,交 AC 的延長(zhǎng)線于點(diǎn) E,交 AB 的延長(zhǎng)線于點(diǎn) F..
(1)依題意補(bǔ)全圖形;
(2)判斷直線 EF 與⊙ O 的位置關(guān)系,并說(shuō)明理由
(3)若 AB=5,BD=3,求線段 BF 的長(zhǎng)
【答案】(1)見(jiàn)解析;(2)直線EF是⊙O的切線,理由見(jiàn)解析;(3)
【解析】
(1)根據(jù)題意補(bǔ)全圖形即可;
(2)連接BC,OD交于點(diǎn)H,證明BC∥EF,根據(jù)OD⊥BC可得OD⊥EF,即可證得直線EF是⊙O的切線;
(3)設(shè)OH=x,在Rt△OHB和Rt△BHD中,利用勾股定理構(gòu)建方程求出OH,進(jìn)而可得AC,AE的長(zhǎng),然后由BC∥EF,利用平行線分線段成比例定理列式求出BF即可.
解:(1)如圖所示;
(2)直線EF是⊙O的切線;
理由:如圖,連接BC,OD交于點(diǎn)H,
∵AB是直徑,
∴∠ACB=90°,
∵∠E=90°,
∴BC∥EF,
∵點(diǎn)D是弧BC的中點(diǎn),
∴OD⊥BC,
∴OD⊥EF,
∴直線EF是⊙O的切線;
(3)如圖,∵AB=5,BD=3,
∴OB=OD=,
設(shè)OH=x,則DH=,
在Rt△OHB中,由勾股定理得:,
在Rt△BHD中,由勾股定理得:,
∴,解得:,
∴,,
∵O是AB中點(diǎn),H是BC中點(diǎn),
∴AC=2OH=,
易證四邊形HCED是矩形,則,
∴AE=,
∵BC∥EF,
∴,即,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生對(duì)“防溺水”安全知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(jī)(百分制)進(jìn)行整理、描述和分析.部分信息如下:
a.七年級(jí)成績(jī)頻數(shù)分布直方圖:
b.七年級(jí)成績(jī)?cè)?/span>這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級(jí)成績(jī)的平均數(shù)、中位數(shù)如下:
年級(jí) | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)在這次測(cè)試中,七年級(jí)在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績(jī)都是78分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰(shuí)更靠前,并說(shuō)明理由;
(4)該校七年級(jí)學(xué)生有400人,假設(shè)全部參加此次測(cè)試,請(qǐng)估計(jì)七年級(jí)成績(jī)超過(guò)平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).P為該拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式.
(2)將該拋物線沿y軸向下平移AB個(gè)單位長(zhǎng)度,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P′,若OP=OP′,求△OP P′的面積.
(3)如圖2,連接AP,BP,設(shè)△APB的面積為S,當(dāng)-2≤m≤2時(shí),直接寫(xiě)出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖像過(guò)點(diǎn),,與軸交于另一點(diǎn),且對(duì)稱軸是直線.
(1)求該二次函數(shù)的解析式;
(2)若是上的一點(diǎn),作交于,當(dāng)面積最大時(shí),求的坐標(biāo);
(3)是軸上的點(diǎn),過(guò)作軸,與拋物線交于,過(guò)作軸于.當(dāng)以、、為頂點(diǎn)的三角形與、、為頂點(diǎn)的三角形相似時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,在等腰直角△ABC 中,∠A =90°,AB=AC=3,在邊 AB 上取一點(diǎn) D(點(diǎn) D 不與點(diǎn) A,B 重合),在邊 AC 上取一點(diǎn) E,使 AE=AD,連接 DE. 把△ADE 繞點(diǎn) A 逆時(shí)針?lè)较蛐D(zhuǎn)α(0°<α<360°),如圖 2.
(1)請(qǐng)你在圖 2 中,連接 CE 和 BD,判斷線段 CE 和 BD 的數(shù)量關(guān)系,并說(shuō)明理由;
(2)請(qǐng)你在圖 3 中,畫(huà)出當(dāng)α =45°時(shí)的圖形,連接 CE 和 BE,求出此時(shí)△CBE 的面積;
(3)若 AD=1,點(diǎn) M 是 CD 的中點(diǎn),在△ADE 繞點(diǎn) A 逆時(shí)針?lè)较蛐D(zhuǎn)的過(guò)程中,線段AM 的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)坐標(biāo)為,為軸正半軸上一動(dòng)點(diǎn),則度數(shù)為_________,在點(diǎn)運(yùn)動(dòng)的過(guò)程中的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年5月13日,大國(guó)重器﹣﹣中國(guó)第一艘國(guó)產(chǎn)航母正式海試,某校團(tuán)支部為了了解同學(xué)們對(duì)此事的知曉情況,隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,并根據(jù)收集到的信息繪制了如下兩幅不完整的統(tǒng)計(jì)圖,圖中A表示“知道得很詳細(xì)”,B表示“知道個(gè)大概”,C表示“聽(tīng)說(shuō)了”,D表示“完全不知道”,請(qǐng)根據(jù)途中提供的信息完成下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中A對(duì)應(yīng)的圓心角是 度,并補(bǔ)全折線統(tǒng)計(jì)圖.
(2)被抽取的同學(xué)中有4位同學(xué)都是班級(jí)的信息員,其中有一位信息員屬于D類,校團(tuán)支部從這4位信息員中隨機(jī)選出兩位作為校廣播站某訪談節(jié)目的嘉賓,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求出屬于D類的信息員被選為的嘉賓的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形中,是邊上的一個(gè)動(dòng)點(diǎn),點(diǎn),,分別是,,的中點(diǎn).
(1)求證:;
(2)當(dāng)是的中點(diǎn)時(shí),四邊形是什么樣的特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com