【題目】如圖,是的直徑,且,點(diǎn)為外一點(diǎn),且,分別切于點(diǎn)、兩點(diǎn).與的延長(zhǎng)線交于點(diǎn).
(1)求證:;
(2)填空
①當(dāng)________時(shí),四邊形是正方形.
②當(dāng)_________時(shí),為等邊三角形.
【答案】(1)證明見解析;(2)6,.
【解析】
(1)根據(jù)切線的性質(zhì)及切線長(zhǎng)定理可得MA⊥OA,MC⊥OC,MC=MA,然后根據(jù)等邊對(duì)等角及等角的余角相等求出∠DCM=∠D,證得DM=MC即可得出結(jié)論;
(2)①根據(jù)正方形的判定定理可知當(dāng)CM=OA=6時(shí),四邊形AOCM是正方形;
②根據(jù)等邊三角形的性質(zhì)可得∠D=60°,進(jìn)而求出∠AOM=30°,然后解直角三角形求出AM即可解決問題.
解:(1)如圖1,連接OM,
∵MA,MC分別切⊙O于點(diǎn)A、C,
∴MA⊥OA,MC⊥OC,MC=MA,
∴∠DCM+∠OCB=90°,∠D+∠B=90°,
∵OC=OB,
∴∠OCB=∠B,
∴∠DCM=∠D,
∴DM=MC,
∴DM=MA;
(2)①如圖2,當(dāng)CM=6時(shí),四邊形AOCM是正方形;
∵AB=12,
∴OA=OC=6,
又∵CM=AM=6,即AO=CO=AM=CM=6,
∴四邊形AOCM是菱形,
又∵∠DAB=90°,
∴四邊形AOCM是正方形;
②連接OM,如圖3,
∵△DCM是等邊三角形,
∴∠D=60°,
∵∠DAB=90°,
∴∠B=30°,
∴∠AOC=2∠B=60°,
∵AB=12,MA,MC分別切⊙O于點(diǎn)A、C,
∴OA=6,∠AOM=30°,
∴tan∠AOM=tan30°=,
∴AM=,
∴CM=AM=,
即當(dāng)CM=時(shí),△CDM為等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周日,小濤從家沿著一條筆直的公路步行去報(bào)亭看報(bào),看了一段時(shí)間后,他按原路返回家中,小濤離家的距離y(單位:m)與他所用的時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列說法中正確的是( )
A. 小濤家離報(bào)亭的距離是900m
B. 小濤從家去報(bào)亭的平均速度是60m/min
C. 小濤從報(bào)亭返回家中的平均速度是80m/min
D. 小濤在報(bào)亭看報(bào)用了15min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(m﹣1)x﹣m,其中m>0,它的圖象與x軸從左到右交于R和Q兩點(diǎn),與y軸交于點(diǎn)P,點(diǎn)O是坐標(biāo)原點(diǎn).下列判斷中不正確的是( )
A.方程x2﹣(m﹣1)x﹣m=0一定有兩個(gè)不相等的實(shí)數(shù)根B.點(diǎn)R的坐標(biāo)一定是(﹣1,0)
C.△POQ是等腰直角三角形D.該二次函數(shù)圖象的對(duì)稱軸在直線x=﹣1的左側(cè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=AC=+2,D是邊AC上的動(dòng)點(diǎn),BD的垂直平分線交BC于點(diǎn)E,連接DE,若△CDE為直角三角形,則BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的斜邊在在軸上,點(diǎn)在軸上,、的長(zhǎng)分別是一元二次方程的兩個(gè)根,且.
(1)求點(diǎn)的坐標(biāo);
(2)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合),過點(diǎn)的直線與軸平行,直線交邊或邊于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段的長(zhǎng)為,求關(guān)于的函數(shù)解析式;
(3)在(2)的條件下,當(dāng)時(shí),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣政府計(jì)劃撥款34000元為福利院購(gòu)買彩電和冰箱,已知商場(chǎng)彩電標(biāo)價(jià)為2000元/臺(tái),冰箱標(biāo)價(jià)為1800元/臺(tái),如按標(biāo)價(jià)購(gòu)買兩種家電,恰好將撥款全部用完.
(1)問原計(jì)劃購(gòu)買的彩電和冰箱各多少臺(tái)?
(2)購(gòu)買的時(shí)候恰逢商場(chǎng)正在進(jìn)行促銷活動(dòng),全場(chǎng)家電均降價(jià)進(jìn)行銷售,若在不增加縣政府實(shí)際負(fù)擔(dān)的情況下,能否比原計(jì)劃多購(gòu)買3臺(tái)冰箱?請(qǐng)通過計(jì)算回答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標(biāo)有數(shù)字1,3,5;第二組卡片正面分別標(biāo)有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當(dāng)摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當(dāng)摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2﹣2x+3交x軸于點(diǎn)A、C(點(diǎn)A在點(diǎn)C左側(cè)),交y軸于點(diǎn)B.
(1)求A,B,C三點(diǎn)坐標(biāo);
(2)如圖1,點(diǎn)D為AC中點(diǎn),點(diǎn)E在線段BD上,且BE=2DE,連接CE并延長(zhǎng)交拋物線于點(diǎn)M,求點(diǎn)M坐標(biāo);
(3)如圖2,將直線AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,點(diǎn)P為△ACG內(nèi)一點(diǎn),連接PA、PC、PG,分別以AP、AG為邊,在它們的左側(cè)作等邊△APR和等邊△AGQ,求PA+PC+PG的最小值,并求當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知C(3,4),以點(diǎn)C為圓心的圓與y軸相切.點(diǎn)A、B在x軸上,且OA=OB.點(diǎn)P為⊙C上的動(dòng)點(diǎn),∠APB=90°,則AB長(zhǎng)度的最大值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com