【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(1,0),將線段OP0按照逆時針方向旋轉(zhuǎn)45°,再將其長度伸長為OP0的2倍,得到線段OP1;又將線段OP1按照逆時針方向旋轉(zhuǎn)45°,長度伸長為OP1的2倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPn(n為正整數(shù)),則點(diǎn)P8的坐標(biāo)為_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科學(xué)記數(shù)法表示為
A. 3.7×10﹣5克 B. 3.7×10﹣6克 C. 37×10﹣7克 D. 3.7×10﹣8克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)M在拋物線上,且S△AOM=2S△BOC,求點(diǎn)M的坐標(biāo);
(3)如圖2,設(shè)點(diǎn)N是線段AC上的一動點(diǎn),作DN⊥x軸,交拋物線于點(diǎn)D,求線段DN長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系xOy中,直線y=﹣x+6與x軸、y軸分別交于B、A兩點(diǎn),點(diǎn)P從點(diǎn)A開沿y軸以每秒1個單位長度的速度向點(diǎn)O運(yùn)動,點(diǎn)Q從點(diǎn)A開始沿AB向點(diǎn)B運(yùn)動(當(dāng)P,Q兩點(diǎn)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動)如果點(diǎn)P,Q從點(diǎn)A同時出發(fā),設(shè)運(yùn)動時間為t秒.
(1)如果點(diǎn)Q的速度為每秒個單位長度,那么當(dāng)t=5時,求證:△APQ∽△ABO;
(2)如果點(diǎn)Q的速度為每秒2個單位長度,那么多少秒時,△APQ的面積為16?
(3)若點(diǎn)H為平面內(nèi)任意一點(diǎn),當(dāng)t=4時,以點(diǎn)A,P,H,Q四點(diǎn)為頂點(diǎn)的四邊形是矩形,請直接寫出此時點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+m﹣1交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,若A點(diǎn)坐標(biāo)為(x1,0),B點(diǎn)坐標(biāo)為(x2,0)(x1≠x2).
(1)求m的取值范圍;
(2)如圖1,若x12+x22=17,求拋物線的解析式;
(3)在(2)的條件下,請解答下列兩個問題:
①如圖1,請連接AC,求證:△ACB為直角三角形.
②如圖2,若D(1,n)在拋物線上,過點(diǎn)A的直線y=﹣x﹣1交(2)中的拋物線于點(diǎn)E,那么在x軸上點(diǎn)B的左側(cè)是否存在點(diǎn)P,使以P、B、D為頂點(diǎn)的三角形與△ABE相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,D是AB上一點(diǎn),AC=BD,P是CD中點(diǎn).求證:AP=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料:有這樣一個問題:關(guān)于x的一元二次方程ax2+bx+c=0(a>0)有兩個不相等的且非零的實數(shù)根.探究a,b,c滿足的條件.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:
①設(shè)一元二次方程ax2+bx+c=0(a>0)對應(yīng)的二次函數(shù)為y=ax2+bx+c(a>0);
②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中a,b,c滿足的條件,列表如下:
方程根的幾何意義:
(1)參考小明的做法,把上述表格補(bǔ)充完整;
(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一個負(fù)實根,一個正實根,且負(fù)實根大于﹣1,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形 ABCD 中,E 為 BC 邊中點(diǎn).
(Ⅰ)已知:如圖,若 AE 平分∠BAD,∠AED=90°,點(diǎn) F 為 AD 上一點(diǎn),AF=AB.求證:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如圖,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,點(diǎn) F,G 均為 AD上的點(diǎn),AF=AB,GD=CD.求證:(1)△GEF 為等邊三角形;(2)AD=AB+ BC+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=44°,點(diǎn)D點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時出發(fā),在線段BC上作等速運(yùn)動,到達(dá)C點(diǎn)、B點(diǎn)后運(yùn)動停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù);
(3)若△ACE的外心在其內(nèi)部時,求∠BDA的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com