【題目】問(wèn)題探究

1)請(qǐng)?jiān)趫D①中作出兩條直線,使它們將圓面四等分;

2)如圖②,是正方形內(nèi)一定點(diǎn),請(qǐng)?jiān)趫D②中作出兩條直線(要求其中一條直線必須過(guò)點(diǎn)),使它們將正方形的面積四等分:

問(wèn)題解決

3)如圖③,在四邊形中,,點(diǎn)的中點(diǎn)如果,且,那么在邊上足否存在一點(diǎn),使所在直線將四邊形的面積分成相等的兩部分?若存在,求出的長(zhǎng):若不存在,說(shuō)明理由.

【答案】1)答案見(jiàn)解析;(2)答案見(jiàn)解析;(3)存在,BQ=b

【解析】

1)畫(huà)出互相垂直的兩直徑即可;

2)連接ACBD交于O,作直線OM,分別交ADP,交BCQ,過(guò)OEFOMDCF,交ABE,則直線EF、OM將正方形的面積四等分,根據(jù)三角形的面積公式和正方形的性質(zhì)求出即可;

3)當(dāng)BQ=CD=b時(shí),PQ將四邊形ABCD的面積二等份,連接BP并延長(zhǎng)交CD的延長(zhǎng)線于點(diǎn)E,證△ABP≌△DEP求出BP=EP,連接CP,求出SBPC=SEPC,作PFCD,PGBC,由BC=AB+CD=DE+CD=CE,求出SBPC-SCQP+SABP=SCPE-SDEP+SCQP,即可得出S四邊形ABQP=S四邊形CDPQ即可.

解:(1)如圖1所示,

2)連接AC、BD交于O,作直線OM,分別交ADP,交BCQ,過(guò)OEFOMDCF,交ABE

則直線EF、OM將正方形的面積四等分,

理由是:∵點(diǎn)O是正方形ABCD的對(duì)稱中心,

AP=CQ,EB=DF,

在△AOP和△EOB

∵∠AOP=90°-AOE,∠BOE=90°-AOE,

∴∠AOP=BOE,

OA=OB,∠OAP=EBO=45°

∴△AOP≌△EOB,

AP=BE=DF=CQ

設(shè)O到正方形ABCD一邊的距離是d,

AP+AEd=BE+BQd=CQ+CFd=PD+DFd,

S四邊形AEOP=S四邊形BEOQ=S四邊形CQOF=S四邊形DPOF,

直線EF、OM將正方形ABCD面積四等份;

3)存在,當(dāng)BQ=CD=b時(shí),PQ將四邊形ABCD的面積二等份,

理由是:如圖③,連接BP并延長(zhǎng)交CD的延長(zhǎng)線于點(diǎn)E,

ABCD

∴∠A=EDP,

∵在△ABP和△DEP

∴△ABP≌△DEPASA),

BP=EP,

連接CP,

∵△BPC的邊BP和△EPC的邊EP上的高相等,

又∵BP=EP,

SBPC=SEPC,

PFCD,PGBC,則BC=AB+CD=DE+CD=CE,

由三角形面積公式得:PF=PG,

CB上截取CQ=DE=AB=a,則SCQP=SDEP=SABP

SBPC-SCQP+SABP=SCPE-SDEP+SCQP

即:S四邊形ABQP=S四邊形CDPQ

BC=AB+CD=a+b,

BQ=b

∴當(dāng)BQ=b時(shí),直線PQ將四邊形ABCD的面積分成相等的兩部分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×qp,q是正整數(shù),且pq,在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:Fn=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有Fm=1.

2如果一個(gè)兩位正整數(shù)t,t=10x+y1xy9,x,y為自然數(shù),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為吉祥數(shù),求所有吉祥數(shù)中Ft的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線經(jīng)過(guò)點(diǎn),直線經(jīng)過(guò)點(diǎn),且關(guān)于軸對(duì)稱,則的交點(diǎn)坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)右側(cè)),一次函數(shù)的圖象經(jīng)過(guò)A、C兩點(diǎn),已知.

(1)求該二次函數(shù)和一次函數(shù)的解析式

(2)連接BC,求ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫(xiě)出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)現(xiàn)有在校學(xué)生 1250 人,為了解本校學(xué)生的課余活動(dòng)情況,采取隨機(jī)抽樣的方法從閱讀、運(yùn)動(dòng)、娛樂(lè)、其它四個(gè)方面調(diào)查了若干名學(xué)生,并將調(diào)查的結(jié)果繪制了 如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

1)本次調(diào)査共取了多少名學(xué)生?

2)通過(guò)計(jì)算補(bǔ)全條形圖,并求出扇形統(tǒng)計(jì)圖中閱讀部分圓心角的度數(shù);

3)請(qǐng)你估計(jì)該中學(xué)在課余時(shí)間參加閱讀和其他活動(dòng)的學(xué)生一共有多少名

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形 ABCD 的邊長(zhǎng)為 5,點(diǎn) EF 分別在 AD、DC 上,AEDF2,BE AF 相交于點(diǎn) G,點(diǎn) H BF 的中點(diǎn),連接 GH,求 GH 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,AM+BM+CM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展陽(yáng)光體育一小時(shí)活動(dòng).根據(jù)學(xué)校事假情況,決定開(kāi)設(shè)四項(xiàng)運(yùn)動(dòng)項(xiàng)目:A:踢毽子;B:籃球;C:跳繩;D:乒乓球.為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了n名學(xué)生進(jìn)行問(wèn)卷調(diào)查,每位學(xué)生在問(wèn)卷調(diào)查時(shí)都按要求只選擇了其中一種喜歡的運(yùn)動(dòng)項(xiàng)目.收回全部問(wèn)卷后,將收集到的數(shù)據(jù)整理并繪制成如下的統(tǒng)計(jì)圖,若參與調(diào)查的學(xué)生中喜歡A方式的學(xué)生的人數(shù)占參與調(diào)查學(xué)生人數(shù)的40%.根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)n的值.

(2)求參與調(diào)查的學(xué)生中喜歡C的學(xué)生的人數(shù).

(3)根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)該校1800名學(xué)生中喜歡C方式的學(xué)生比喜歡B方式的學(xué)生多的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案