【題目】“愛心”帳篷集團(tuán)的總廠和分廠分別位于甲、乙兩市,兩廠原來每周生產(chǎn)帳篷共9千頂,現(xiàn)某地震災(zāi)區(qū)急需帳篷14千頂,該集團(tuán)決定在一周內(nèi)趕制出這批帳篷.為此,全體職工加班加點(diǎn),總廠和分廠一周內(nèi)制作的帳篷數(shù)分別達(dá)到了原來的1.6倍、1.5倍,恰好按時(shí)完成了這項(xiàng)任務(wù).
(1)在趕制帳篷的一周內(nèi),總廠和分廠各生產(chǎn)帳篷多少千頂?
(2)現(xiàn)要將這些帳篷用卡車一次性運(yùn)送到該地震災(zāi)區(qū)的兩地,由于兩市通住兩地道路的路況不同,卡車的運(yùn)載量也不同.已知運(yùn)送帳篷每千頂所需的車輛數(shù)、兩地所急需的帳篷數(shù)如下表:
地 | 地 | ||
每千頂帳篷 所需車輛數(shù) | 甲市 | 4 | 7 |
乙市 | 3 | 5 | |
所急需帳篷數(shù)(單位:千頂) | 9 | 5 |
請?jiān)O(shè)計(jì)一種運(yùn)送方案,使所需的車輛總數(shù)最少.說明理由,并求出最少車輛總數(shù).
【答案】(1)設(shè)總廠原來每周制作帳篷千頂,分廠原來每周制作帳篷千頂.
由題意,得
解得所以(千頂),(千頂).
答:在趕制帳篷的一周內(nèi),總廠、分廠各生產(chǎn)帳篷8千頂、6千頂.
(2)設(shè)從(甲市)總廠調(diào)配千頂帳篷到災(zāi)區(qū)的地,則總廠調(diào)配到災(zāi)區(qū)地的帳篷為千頂,(乙市)分廠調(diào)配到災(zāi)區(qū)兩地的帳篷分別為千頂.
甲、乙兩市所需運(yùn)送帳篷的車輛總數(shù)為輛.
由題意,得.
即.
因?yàn)?/span>,所以隨的增大而減。
所以,當(dāng)時(shí),有最小值60.
答:從總廠運(yùn)送到災(zāi)區(qū)地帳篷8千頂,從分廠運(yùn)送到災(zāi)區(qū)兩地帳篷分別為1千頂、5千頂時(shí)所用車輛最少,最少的車輛為60輛.
【解析】(1)本題中的兩個(gè)等量關(guān)系:①總廠原計(jì)劃+分廠原計(jì)劃=9,②總廠趕制+分廠趕制=14;(2)運(yùn)貨量問題中的最小值,一般選取有代表性的變量作為自變量,利用它表示出問題中的多個(gè)變量,然后得到反映實(shí)際問題的一次函數(shù),利用一次函數(shù)的增減性即可得到問題的答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計(jì)圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點(diǎn)C在DE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫有:限高 米).如果進(jìn)入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,以等邊△ABC的邊BC為直徑作⊙O,分別交AB,AC于點(diǎn)D,E,過點(diǎn)D作DF⊥AC交AC于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若等邊△ABC的邊長為8,求由、DF、EF圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△MNQ中,MQ≠NQ.
(1)請你以MN為一邊,在MN的同側(cè)構(gòu)造一個(gè)與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;
(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:
如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某,F(xiàn)有九年級學(xué)生800名,為了了解這些學(xué)生的體質(zhì)健康情況,學(xué)校在開學(xué)初從中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試(測試結(jié)果分成優(yōu)秀、良好、合格、不合格四個(gè)等級),并將測試結(jié)果繪制成如圖所示兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中提供的信息解答下列問題:
(1)本次抽取的學(xué)生人數(shù)共有____名,在扇形統(tǒng)計(jì)圖中,“合格”等級所對應(yīng)的圓心角的度數(shù)是______;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)估計(jì)九年級學(xué)生中達(dá)到“合格”以上(含合格)等級的學(xué)生一共有多少名?
(4)若抽取的學(xué)生中,恰好有九年級(1)班的2名男生,2名女生,現(xiàn)要從這4人中隨機(jī)抽取2人擔(dān)任組長工作,請用列表法或樹狀圖法求所抽取的2名學(xué)生中至少有1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測∠FCN的度數(shù),并說明理由;
(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)E由B向C運(yùn)動時(shí),∠FCN的大小是否總保持不變?若∠FCN的大小不變,請用含a、b的代數(shù)式表示tan∠FCN的值;若∠FCN的大小發(fā)生改變,請舉例說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜專業(yè)戶試種植了一種緊俏蔬菜(都能賣出),其中每千克的成本在9元/千克的基礎(chǔ)上,還有一些上。舾觾r(jià)(元/)與需求量(千克)成反比,比例系數(shù)為30.市場連續(xù)四天調(diào)查發(fā)現(xiàn),蔬菜售價(jià)(元/)與市場需求量有如下關(guān)系:
需求量 | 50 | 40 | 30 | 20 |
蔬菜售價(jià)(元/) | 10 | 15 | 20 | 25 |
(1)直接寫出每千克的成本與需求量的關(guān)系式_________;
(2)求與的關(guān)系式;
(3)當(dāng)某天的利潤率達(dá)到時(shí),求這天的需求量;
(4)求需求量是多少千克時(shí),利潤達(dá)到最大值,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com