【題目】如圖,在ABC中,ABAC15,且ABC的面積為90,D是線段AB上的動點(diǎn)(包含端點(diǎn)),若線段CD的長為正整數(shù),則點(diǎn)D的個數(shù)共有( 。

A.2B.3C.4D.5

【答案】C

【解析】

首先過CCEAB,當(dāng)DE重合時,CE最短,首先利用三角形面積求得CE的長,然后可得CD的取值范圍,進(jìn)而可得答案.

解:過CCEAB,

ABAC15,且ABC的面積為90,

SABC90,

CE12

AE=9,

BE1596,

CB

D是線段AB上的動點(diǎn)(含端點(diǎn)A、B).

12CD15,

CD12131415

∵線段CD長為正整數(shù),

CD的可以有5條,長為1514,13,1213

∴點(diǎn)D的個數(shù)共有5個,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為旋轉(zhuǎn)中心,把點(diǎn)A(3,4)逆時針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為( 。

A. (4,﹣3) B. (﹣4,3) C. (﹣3,4) D. (﹣3,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學(xué)等式例如:由圖1可得到

1)根據(jù)以上數(shù)學(xué)等式,若,,求值;

2)寫出由圖2所表示的數(shù)學(xué)等式:__________;

3)利用上述結(jié)論,解決下面問題:已知,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解七年級學(xué)生體育測試成績情況,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績統(tǒng)計如下,其中右側(cè)扇形統(tǒng)計圖中的圓心角α36°,根據(jù)圖表中提供的信息,回答下列問題:

體育成績統(tǒng)計表

體育成績(分)

人數(shù)(人)

百分比(%)

26

8

16

27

12

24

28

15

29

n

30

(1)求樣本容量及n的值;

(2)已知該校七年級共有500名學(xué)生,如果體育成績達(dá)28分以上為優(yōu)秀,請估計該校七年級學(xué)生體育成績達(dá)到優(yōu)秀的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰RtABC中,∠A90°,點(diǎn)D,E分別在邊AB,AC上,ADAE,連接DC,點(diǎn)M,PN分別為DE,DC,BC的中點(diǎn).

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明:把ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

3)拓展延伸:把ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD8,AB20,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),∠B=50°,A=26°,將ABC沿DE折疊,點(diǎn)A的對應(yīng)點(diǎn)是點(diǎn)A′,則∠AEA′的度數(shù)是(  )

A. 145° B. 152° C. 158° D. 160°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在線段BC上,ABBCDCBC,∠AED90°,且AEDE

1)求證:ABE≌△ECD

2)直接寫出線段AB、BCCD之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.

(1)若方程有兩個不相等的實(shí)數(shù)根,求k的取值范圍;

(2)若方程的兩根恰好是一個矩形兩鄰邊的長,且k=2,求該矩形的對角線L的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長交⊙O于點(diǎn)D,連接BDAE于點(diǎn)F,延長AE至點(diǎn)C,使得FC=BC,連接BC

(1)求證:BC是⊙O的切線;

(2)O的半徑為5,tanA=,求FD的長.

查看答案和解析>>

同步練習(xí)冊答案