【答案】(1)種植A種生姜14畝,種植B種生姜16畝;(2) 種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.

【解析】

試題(1)設(shè)該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù):A種生姜的產(chǎn)量+B種生姜的產(chǎn)量=總產(chǎn)量,列方程求解;

(2)設(shè)A種生姜x畝,根據(jù)A種生姜的畝數(shù)不少于B種的一半,列不等式求x的取值范圍,再根據(jù)(1)的等量關(guān)系列出函數(shù)關(guān)系式,在x的取值范圍內(nèi)求總產(chǎn)量的最大值.

試題解析(1)設(shè)該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,

根據(jù)題意,2000x+2500(30-x)=68000,

解得x=14,

∴30-x=16,

答:種植A種生姜14畝,種植B種生姜16畝;

(2)由題意得,x≥(30-x),解得x≥10,

設(shè)全部收購該基地生姜的年總收入為y元,則

y=8×2000x+7×2500(30-x)=-1500x+525000,

∵y隨x的增大而減小,∴當(dāng)x=10時,y有最大值,

此時,30-x=20,y的最大值為510000元,

答:種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】珠海到韶關(guān)的距離約為360千米,小劉駕駛小轎車,小張駕駛大貨車,兩人都從珠海去韶關(guān),小劉比小張晚出發(fā)90分鐘,最后兩車同時到達(dá)韶關(guān),已知小轎車的速度是大貨車速度的1.5.

1)分別求小轎車和大貨車的速度;

2)當(dāng)小劉行駛了2小時,此時兩車相距多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=12厘米,BC=8厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.若點(diǎn)Q的運(yùn)動速度為x厘米/秒,則當(dāng)△BPD與△CQP全等時,x的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,每個小正方形的邊長為1個單位長度

(1)作出ABC關(guān)于原點(diǎn)對稱的A1B1C1并寫出A1,B1C1的坐標(biāo)

(2)y軸上有一點(diǎn)Q,使AQ+CQ的值最小求點(diǎn)Q的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF.若AB=6,則菱形AECF的面積為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,□ABCD的對角線AC,BD相交于點(diǎn)O,E、F、G、H分別是OA、OB、OC、OD的中點(diǎn),那么□ABCD與四邊形EFGH是否是位似圖形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)第中有一個2×2的正方形網(wǎng)格,每個格點(diǎn)的橫、縱坐標(biāo)均為整數(shù),已知點(diǎn)A(12).作直線OA并向右平移k個單位,要使分布在平移后的直線兩側(cè)的格點(diǎn)數(shù)相同,則k的值為(

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=2x+ay=x+b的圖象都經(jīng)過點(diǎn)A(2,0)且與y軸分別交于B,C兩點(diǎn)

(1)分別求出這兩個一次函數(shù)的解析式

(2)ABC的面積

查看答案和解析>>

同步練習(xí)冊答案