【題目】如圖,在△ABC中,AB,AC的垂直平分線交BC于點E,G,若∠B+∠C=70°,則∠EAG=___.
【答案】40°
【解析】
根據垂直平分線的性質可得AE=BE,AG=CG,根據等邊對等角可得∠EAB=∠B,∠CAG=∠C,又因為∠AEG為三角形ABE的外角,∠AGE是三角形AGC的外角,可得∠AEG=2∠B,∠AGE=2∠C,再根據三角形AEG的內角和可得,帶入已知∠B+∠C=70°,即可得出答案.
解:∵DE垂直平分線段AB,
∴AE=BE,
∴∠EAB=∠B,
∵FG垂直平分線段AC,
∴AG=CG,
∴∠CAG=∠C,
∵∠AEG為三角形ABE的外角,
∴∠AEG=∠EAB+∠B=2∠B;
∵∠AGE是三角形AGC的外角,
∴∠AGE=∠CAG+∠C=2∠C;
在△AEG中,,
∵∠B+∠C=70°,
∴;
故答案為40°.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,AD+EC=AB.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數;
(3)△DEF可能是等腰直角三角形嗎?為什么?
(4)請你猜想:當∠A為多少度時,∠EDF+∠EFD=120°,并請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,
(1)求∠DOE的度數;
(2)若OF⊥OE,求∠COF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如圖1所示,當α=60°時,求證:△DCE是等邊三角形;
(2)如圖2所示,當α=45°時,求證:=;
(3)如圖3所示,當α為任意銳角時,請直接寫出線段CE與DE的數量關系:=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點M、N和∠AOB求作一點P,使P到點M、N的距離相等,且到∠AOB的兩邊的距離相等.(尺規(guī)作圖,不寫做法,保留作圖痕跡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點D,∠BAD=∠CAD,BE平分∠ABC交AC于E,∠C=42°,若點F為線段BC上的一點,當△EFC為直角三角形時,∠BEF的度數為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先尺規(guī)作圖,后進行計算:如圖,△ABC中,∠A=105°.
(1)試求作一點P,使得點P到B、C兩點的距離相等,并且到∠ABC兩邊的距離相等(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)在(1)的條件下,若∠ACP=30°,則∠PBC的度數為 °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數,每邊上相鄰釘子間的距離為1),連接任意兩個釘子所得到的不同長度值的線段種數:
當n=2時,釘子板上所連不同線段的長度值只有1與,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數,則S=2;
當n=3時,釘子板上所連不同線段的長度值只有1, ,2, ,2五種,比n=2時增加了3種,即S=2+3=5.
(1)觀察圖形,填寫下表:
釘子數(n×n) | S值 |
2×2 | 2 |
3×3 | 2+3 |
4×4 | 2+3+(____) |
5×5 | (________) |
(2)寫出(n-1)×(n-1)和n×n的兩個釘子板上,不同長度值的線段種數之間的關系;(用式子或語言表述均可).
(3)對n×n的釘子板,寫出用n表示S的代數式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com