【題目】如圖,點(diǎn)P,M,N分別在等邊△ABC的各邊上,且MP⊥AB于點(diǎn)P,MN⊥BC于點(diǎn)M,PN⊥AC于點(diǎn)N.
(1)求證:△PMN是等邊三角形;
(2)若AB=18cm,求CM的長.
【答案】(1)證明見解析;(2)6
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C,進(jìn)而得出∠MPB=∠NMC=∠PNA=90°,再根據(jù)平角的意義即可得出∠NPM=∠PMN=∠MNP,即可證得△PMN是等邊三角形;
(2)易證得△PBM≌△MCN≌△NAP,得出PA=BM=CN,PB=MC=AN,從而求得BM+PB=AB=12cm,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半得出2PB=BM,即可求得PB的長,進(jìn)而得出CM的長.
(1)證明:∵△ABC是正三角形,
∴∠A=∠B=∠C,
∵MP⊥AB,MN⊥BC,PN⊥AC,
∴∠MPB=∠NMC=∠PNA=90°,
∴∠PMB=∠MNC=∠APN,
∴∠NPM=∠PMN=∠MNP,
∴△PMN是等邊三角形;
(2)解:∵△PMN是等邊三角形,
∴PM=MN=NP,
在△PBM、△MCN和△NAP中,
,
∴△PBM≌△MCN≌△NAP(AAS),
∴PA=BM=CN,PB=CM=AN,
∴BM+PB=AB=18cm,
∵△ABC是正三角形,
∴∠A=∠B=∠C=60°,
∴2PB=BM,
∴2PB+PB=18cm,
∴PB=6cm,
∴CM=6cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)是上一點(diǎn),與過點(diǎn)的切線垂直,垂足為點(diǎn),直線與的延長線相交于點(diǎn),平分,交于點(diǎn).
求證:平分;
求證:是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣西桂林市)已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個問題,在他的著作《度量論》一書中給出了計(jì)算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:
∵a=3,b=4,c=5,∴p==6,∴S===6.
事實(shí)上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C,D兩點(diǎn),點(diǎn)E為⊙O上一動點(diǎn),CF⊥AE于F,則弦AB的長度為________;點(diǎn)E在運(yùn)動過程中,線段FG的長度的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC 中,點(diǎn) D 是線段 BC 上一點(diǎn).作射線 AD ,點(diǎn) B 關(guān)于射線 AD 的對稱點(diǎn)為 E .連接 EC 并延長,交射線 AD 于點(diǎn) F .
(1)補(bǔ)全圖形;(2)求∠AFE 的度數(shù);(3)用等式表示線段 AF 、CF 、 EF 之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點(diǎn)D在線段BC上運(yùn)動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時,∠EDC= °,∠DEC= °;點(diǎn)D從B向C運(yùn)動時,∠BDA逐漸變 (填“大”或“小”);
(2)當(dāng)DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點(diǎn)D的運(yùn)動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩名同學(xué)在同一個學(xué)校上學(xué),B同學(xué)上學(xué)的路上經(jīng)過A同學(xué)家。A同學(xué)步行,B同學(xué)騎自行車,某天,A,B兩名同學(xué)同時從家出發(fā)到學(xué)校,如圖,A表示A同學(xué)離B同學(xué)家的路程A(m)與行走時間(min)之間的函數(shù)關(guān)系圖象,B表示B同學(xué)離家的路程B(m)與行走時間(min)之間的函數(shù)關(guān)系圖象.
(1)A,B兩名同學(xué)的家相距________m.
(2)B同學(xué)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,修理自行車所用的時間是 _____min.
(3)B同學(xué)出發(fā)后______min與A同學(xué)相遇.
(4)求出A同學(xué)離B同學(xué)家的路程A與時間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個案例,請補(bǔ)充完整,原題:如圖1,在平行四邊形ABCD中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長線交射線CD于點(diǎn)G.若=3,求的值.
(1)嘗試探究:
在圖1中,過點(diǎn)E作EH∥AB交BG于點(diǎn)H,則AB和EH的數(shù)量關(guān)系是________,
CG和EH的數(shù)量關(guān)系是________,
的值是________.
(2)類比延伸:
如圖2,在原題條件下,若=m(m>0)則的值是________(用含有m的代數(shù)式表示),試寫出解答過程.
(3)拓展遷移:
如圖3,梯形ABCD中,DC∥AB,點(diǎn)E是BC的延長線上的一點(diǎn),AE和BD相交于點(diǎn)F,若=a,=b(a>0,b>0)則的值是________(用含a、b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com