【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:

同號(hào);當(dāng)時(shí),函數(shù)值相等;;④當(dāng)時(shí),的值只能取;⑤當(dāng)時(shí),.其中正確的有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

【答案】C

【解析】

由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

解:①∵拋物線的開口方向向上,

a>0,

∵對(duì)稱軸為x==2>0,

又∵a>0,

b<0,

a,b異號(hào),錯(cuò)誤;

②∵x=1x=3關(guān)于x=2對(duì)稱,

∴當(dāng)x=1x=3時(shí),函數(shù)值相等,正確;

③∵x==2,

b=-4a,

4a+b=0,正確;

④∵y=-2正好為拋物線頂點(diǎn)坐標(biāo)的縱坐標(biāo),

∴當(dāng)y=-2時(shí),x的值只能取2,正確;

⑤∵對(duì)稱軸為x=2,

x=-1x=5關(guān)于x=2對(duì)稱,

故當(dāng)-1<x<5時(shí),y<0.

∴②、、⑤正確.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)

(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)

測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,以AC邊為直徑作⊙OBC邊于點(diǎn)D,交AB于點(diǎn)G,且DBC中點(diǎn),DEAB,交AB于點(diǎn)E,交AC的延長(zhǎng)線交于點(diǎn)F.

(1)求證:直線EF是⊙O的切線.

(2)若CF=3,cosCAB=,求⊙O的半徑和線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,Rt△ABC中,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的長(zhǎng);

(2)如圖2,已知△ABC,若AB邊上存在一點(diǎn)M,若AC邊上存在一點(diǎn)N,使MB=MN,且△AMN∽△ABC,請(qǐng)利用沒有刻度的直尺和圓規(guī),作出符合條件的線段MN(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+mx軸于點(diǎn)A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,與直線l交于點(diǎn)D,已知CDx軸平行,且SACD:SABD=3:5.

(1)求點(diǎn)A的坐標(biāo);

(2)求此二次函數(shù)的解析式;

(3)點(diǎn)P為直線l上一動(dòng)點(diǎn),將線段AC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點(diǎn)A,A'是對(duì)應(yīng)點(diǎn),點(diǎn)C,C'是對(duì)應(yīng)點(diǎn)).請(qǐng)問(wèn):是否存在這樣的點(diǎn)P,使得旋轉(zhuǎn)后點(diǎn)A'和點(diǎn)C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請(qǐng)直接寫出點(diǎn)A'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB=30°,OA表示草地邊,OB表示河邊,點(diǎn)P表示家且在AOB內(nèi).某人要從家里出發(fā)先到草地邊給馬喂草,然后到河邊喂水,最后回到家里.

(1)請(qǐng)用尺規(guī)在圖上畫出此人行走的最短路線圖(保留作圖痕跡,不寫作法和理由).

(2)若OP=30米,求此人行走的最短路線的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1已知如圖1,等腰直角三角形ABCB=90°,AD是∠BAC的外角平分線,CB邊的延長(zhǎng)線于點(diǎn)D

求證BD=AB+AC

2)對(duì)于任意三角形ABC,ABC=2∠C,AD是∠BAC的外角平分線,CB邊的延長(zhǎng)線于點(diǎn)D,如圖2,請(qǐng)你寫出線段AC、ABBD之間的數(shù)量關(guān)系并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為.

1)如圖1,若點(diǎn)的坐標(biāo)為是等腰直角三角形,,,求點(diǎn)坐標(biāo);

2)如圖2,若點(diǎn)的中點(diǎn),求證:

3)如圖3,是等腰直角三角形,,是等邊三角形,連接,若,求點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtACB,ACB=90°,AC=BC,E點(diǎn)為射線CB上一動(dòng)點(diǎn),連接AE,作AFAEAF=AE.

(1)如圖1,過(guò)F點(diǎn)作FDACACD點(diǎn),求證:EC+CD=DF;

(2)如圖2,連接BFACG點(diǎn), =3,求證:E點(diǎn)為BC中點(diǎn);

(3)當(dāng)E點(diǎn)在射線CB,連接BF與直線AC交于G點(diǎn),,=_______

查看答案和解析>>

同步練習(xí)冊(cè)答案