【題目】已知關(guān)于x的一元二次方程(a+b)x2+2cx+(b-a)=0,其中a、b、c分別為三邊的長.
(1)如果是方程的根,試判斷的形狀,并說明理由.
(2)如果方程有兩個相等的實數(shù)根,試判斷的形狀,并說明理由.
(3)如果是等邊三角形,試求這個一元二次方程的根.
【答案】(1)△ABC是等腰三角形,理由見解析;(2) △ABC是直角三角形,理由見解析;(3)x1=0或x2=-1.
【解析】試題分析: (1)將x=-1代入方程中,化簡即可得出b=c,即可得出結(jié)論;
(2)利用一元二次方程有兩個相等的實數(shù)根,用△=0建立方程,即可得出a2+c2=b2,進而得出結(jié)論;
(3)先判斷出a=b=c,再代入化簡即可得出方程x2+x=0,解方程即可得出結(jié)論.
試題解析:(1)△ABC是等腰三角形,
理由:當x=-1時,(a+b)-2c+(b-a)=0,
∴b=c,
∴△ABC是等腰三角形,
(2)△ABC是直角三角形,
理由:∵方程有兩個相等的實數(shù)根,
∴△=(2c)2-4(a+b)(b-a)=0,
∴a2+c2=b2,
∴△ABC是直角三角形;
(3)∵△ABC是等邊三角形,
∴a=b=c,
∴原方程可化為:2ax2+2ax=0,
即:x2+x=0,
∴x(x+1)=0,
∴x1=0,x2=-1,
即:這個一元二次方程的根為x1=0,x2=-1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點A(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2018次相遇地點的坐標是( 。
A. (1,﹣1) B. (2,0) C. (﹣1,1) D. (﹣1,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
如圖,在平面直角坐標系中,直線與軸交于點,與直線交于點, 直線與軸交于點.
(1)求直線的函數(shù)表達式;
(2)在線段上找一點,使得與的面積相等,求出點的坐標;
(3)y軸上有一動點,直線上有一動點,若是以線段為斜邊的等腰直角三角形,求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】材料:帕普斯借助函數(shù)給出了一種“三等分銳角”的方法,具體如下:
①建立平面直角坐標系,將已知銳角∠AOB的頂點與原點O重合,角的一邊OB與x軸正方向重合;
②在平面直角坐標系里,繪制函數(shù)y=的圖象,圖象與已知角的另一邊OA交于點P;
③以P為圓心,2OP為半徑作弧,交函數(shù)y=的圖象于點R;
④分別過點P和R作x軸和y軸的平行線,兩線相交于點M、Q;
⑤連接OM,得到∠MOB,這時∠MOB=∠AOB.
根據(jù)以上材料解答下列問題:
(1)設(shè)點P的坐標為(a,),點R的坐標為(b,),則點M的坐標為 ;
(2)求證:點Q在直線OM上;
(3)求證:∠MOB=∠AOB;
(4)應用上述方法得到的結(jié)論,如何三等分一個鈍角(用文字簡要說明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(14分)如圖,已知拋物線()與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉(zhuǎn)90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在RtΔABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D,以AB上某一點O為圓心作⊙O,使⊙O經(jīng)過點A和點D,與AB邊的另一個交點為E.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為4,∠B=30°.求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格圖中有△ABC,建立平面直角坐標系后,點O的坐標是(0,0).
(1)以O(shè)為位似中心,作△A′B′C′∽△ABC,相似比為1:2,且保證△A′B′C′在第三象限;
(2)點B′的坐標為(_______),______);
(3)若線段BC上有一點D,它的坐標為(a,b),
那么它的對應點D′的坐標為(__________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,∠1=75°,∠2=105°,∠C=∠D.判斷 ∠A與 ∠F的大小關(guān)系,并說明理由.
(2)對于某些數(shù)學問題,靈活運用整體思想,可以化難為易.在解二元一次方程組時,就可以運用整體代入法:如解方程組:.
解:把②代入①得,解得把代入②得,
所以方程組的解為
請用同樣的方法解方程組:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com