【題目】某校為開展好大課間活動,欲購買單價為20元的排球和單價為80元的籃球共100個.
(1)設購買排球數(shù)為x(個),購買兩種球的總費用為y(元),請你寫出y與x的函數(shù)關系式(不要求寫出自變量的取值范圍);
(2)如果購買兩種球的總費用不超過6620元,并且籃球數(shù)不少于排球數(shù)的3倍,那么有哪幾種購買方案?
(3)從節(jié)約開支的角度來看,你認為采用哪種方案更合算?

【答案】
(1)解:設購買排球x個,購買籃球和排球的總費用y元,

y=20x+80(100﹣x)=8000﹣60x;


(2)解:設購買排球x個,則籃球的個數(shù)是(100﹣x),根據(jù)題意得:

解得:23≤x≤25,

因為x是正整數(shù),

所以x只能取25,24,23,

當買排球25個時,籃球的個數(shù)是75個,

當買排球24個時,籃球的個數(shù)是76個,

當買排球23個時,籃球的個數(shù)是77個,

所以有3種購買方案.


(3)解:根據(jù)(2)得:

當買排球25個,籃球的個數(shù)是75個,總費用是:25×20+75×80=6500(元),

當買排球24個,籃球的個數(shù)是76個,總費用是:24×20+76×80=6560(元),

當買排球23個,籃球的個數(shù)是77個,總費用是:23×20+77×80=6620(元),

所以采用買排球25個,籃球75個時更合算.


【解析】(1)設購買籃球x個,購買籃球和排球的總費用y元,根據(jù)某校計劃購買籃球和排球共100個,已知籃球每個80元,排球每個20元可列出函數(shù)式.(2)先設出購買籃球x個,根據(jù)籃球的個數(shù)不少于排球個數(shù)的3倍和購買兩種球的總費用及單價,列出不等式組,解出x的值,即可得出答案;(3)根據(jù)(2)得出的籃球和排球的個數(shù),再根據(jù)它們的單價,即可求出總費用,再進行比較,即可得出更合算的方案.
【考點精析】根據(jù)題目的已知條件,利用一元一次不等式組的應用的相關知識可以得到問題的答案,需要掌握1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在B港有甲、乙兩艘漁船,若甲船沿北偏東60°方向以每小時8海里速度前進,乙船沿南偏東某方向以每小時15海里速度全速前進,2小時后甲船到M島,乙船到P島,兩島相距34海里,你知道乙船沿那個方向航行嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD∥BC,∠ABC的角平分線BP與∠BAD的角平分線AP相交于點P,作PE⊥AB于點E.若PE=2,則兩平行線AD與BC間的距離為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聯(lián)合國規(guī)定每年的6月5日是“世界環(huán)境日”,為配合今年的“世界環(huán)境日”宣傳活動,某校課外活動小組對全校師生開展了以“愛護環(huán)境,從我做起”為主題的問卷調查活動,將調查結果分析整理后,制成了上面的兩個統(tǒng)計圖.
其中:A:能將垃圾放到規(guī)定的地方,而且還會考慮垃圾的分類;
B:能將垃圾放到規(guī)定的地方,但不會考慮垃圾的分類;
C:偶爾會將垃圾放到規(guī)定的地方;
D:隨手亂扔垃圾.

根據(jù)以上信息回答下列問題:
(1)該校課外活動小組共調查了多少人?并補全上面的條形統(tǒng)計圖;
(2)如果該校共有師生2400人,那么隨手亂扔垃圾的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是等邊△ABC內一點,OA=6,OB=8,OC=10,以B為旋轉中心,將線段BO逆時針旋轉60°得到線段BO′,連接AO′.則下列結論:①△BO′A可以由△BOC繞點B逆時針方向旋轉60°得到;②連接OO′,則OO′=8;③∠AOB=150°;④ 其中正確的有(

A.①②
B.①②③
C.①②④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用科學記數(shù)法表示660 000的結果是

A.66×104 B.6.6×105 C. 0.66×106 D.6.6×106

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解a3b﹣ab=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AB=4cm,CD⊥AB于點D,動點P從點A出發(fā),沿AC2cm/s的速度向終點C運動,當點P出發(fā)后,過點PPQ∥BC交折線AD﹣DC于點Q,以PQ為邊作等邊三角形PQR,設四邊形APRQ△ACD重疊部分圖形的面積為Scm2),點P運動的時間為ts).

1)當點Q在線段AD上時,用含t的代數(shù)式表示QR的長;

2)求點R運動的路程長;

3)當點Q在線段AD上時,求St之間的函數(shù)關系式;

4)直接寫出以點B、QR為頂點的三角形是直角三角形時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形的周長為20cm,兩個相鄰的內角的度數(shù)之比為1:2,則較長的對角線的長度是(
A.20 cm
B.5 cm
C. ?cm
D.5 cm

查看答案和解析>>

同步練習冊答案