【題目】如圖,二次函數(shù)的圖象與軸交于兩點,軸交于點.在函數(shù)圖象上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.

(1)的值;

(2)如圖①,連接, 線段上的點關(guān)于直線的對稱點F'恰好在線段BE上,求點的坐標;

(3)如圖②,動點在線段上,過點軸的垂線分別與交于點,與拋物線交于點.試問:直線右側(cè)的拋物線上是否存在點,使得的面積相等,且線段的長度最小?如果存在,求出點的坐標;如果不存在,說明理由.

【答案】1,;(2;(3.

【解析】

1)由條件可求得拋物線對稱軸,則可求得的值;由,可用表示出點坐標,代入拋物線解析式可求得的值;

2)可設(shè),則可表示出的坐標,由的坐標可求得直線的解析式,把坐標代入直線解析式可得到關(guān)于t的方程,可求得點的坐標;

3)設(shè)點坐標為,可表示出、、的長,作,垂足為,則可求得的長,用可表示出、的坐標,在中,由勾股定理可得到關(guān)于的二次函數(shù),利用二次函數(shù)的性質(zhì)可知其取得最小值時的值,則可求得點的坐標,

解:(1軸,

拋物線的對稱軸為直線

,

,

代入:

解得 (舍去),

.

2)由(1)可知

由待定系數(shù)法可得直線BE的解析式為:

設(shè)由,點關(guān)于直線的對稱點的坐標為

則有:

3)存在點滿足題意.

設(shè)點坐標為,則,

,垂足為

,

,

在直線的右側(cè)時,點的坐標為,點的坐標為,點的坐標為

中, ,

時,取最小值1.此時點的坐標為

綜上可知存在滿足題意的點,其坐標為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF90°,延長EFBC的延長線于點G.

(1)求證:△ABE∽△EGB.

(2)AB4,求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在陽光下,小東同學(xué)測得一根長為米的竹竿的影長為米.

同一時刻米的竹竿的影長為________米.

同一時刻小東在測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在操場的第一級臺階上,測得落在第一級臺階上的影子長為米,第一級臺階的高為米,落在地面上的影子長為米,則樹的高度為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防“流感”,某學(xué)校對教室采用藥熏法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點燃后的時間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點燃后4分鐘燃盡,此時室內(nèi)每立方米空氣中含藥量為8毫克.

(1)求藥物燃燒時,y與x之間函數(shù)的表達式;

(2)求藥物燃盡后,y與x之間函數(shù)的表達式;

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于2毫克時,才能有效殺滅空氣中的病菌,那么此次消毒有效時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是等邊三角形ABC內(nèi)的一點,∠BOC150°,將△BOC繞點C按順時針旋轉(zhuǎn)得到△ADC,連接OD,OA

(1)求∠ODC的度數(shù);

(2)若OB2,OC3,求AO的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合肥某商場購進一批新型網(wǎng)紅玩具.已知這種玩具進價為17/件,且該玩具的月銷售量y(件)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,下表是月銷售量與銷售單價的幾組對應(yīng)關(guān)系:

銷售單價x/

20

25

30

35

月銷售量y/

3300

2800

2300

1800

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)當(dāng)銷售單價為多少元時,月銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過A(-1,0)、B(4,0)兩點,y軸交于點C,Dy軸上一點,D關(guān)于直線BC的對稱點為D’

(1)求拋物線的解析式;

(2)當(dāng)點Dx軸上方,且△OBD的面積等于△OBC的面積時,求點D的坐標;

(3)當(dāng)點D'剛好落在第四象限的拋物線上時,求出點D的坐標;

(4)P在拋物線上(不與點B、C重合),連接PD、PD′、DD,是否存在點P,使△PDD′是以D為直角頂點的等腰直角三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長沙市教育局組織部分教師分別到A、BC、D四個地方進行課程培訓(xùn),教育局按定額購買了前往四地的車票,如圖1是未制作完成的車票種類和數(shù)量的條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

1)若去A地的車票占全部車票的20%,求去C地的車票數(shù),并補全條形統(tǒng)計圖(圖1);

2)請從小到大寫出這四類車票數(shù)的數(shù)字,并直接寫出這四個數(shù)據(jù)的平均數(shù)和中位數(shù);

3)如圖2,甲轉(zhuǎn)盤被分成四等份且標有數(shù)字12、3、4,乙轉(zhuǎn)盤分成三等份且標有數(shù)字7、89,具體規(guī)定是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)指針指向的兩個數(shù)字之和是偶數(shù)時,李老師出去培訓(xùn),否則張老師出去培訓(xùn)(指針指在線上重轉(zhuǎn)),試用列表法樹狀圖的方法分析這個規(guī)定對雙方是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實美麗撫順的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

查看答案和解析>>

同步練習(xí)冊答案