【題目】某種蔬菜的單價 與銷售月份x之間的關系如圖1所示,成本 與銷售月份x之間的關系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)
(1)已知6月份這種蔬菜的成本最低,此時出售每千克的利潤是 元.(利潤=售價-成本);
(2)設每千克該蔬菜銷售利潤為P,請列出x與P之間的函數(shù)關系式,并求出哪個月出售這種蔬菜每千克的利潤最大,最大利潤是多少?
【答案】(1)2;(2)5月時利潤最大,最大利潤為元.
【解析】
(1)找出當x=6時,y1、y2的值,二者做差即可得出結(jié)論;
(2)觀察圖象找出點的坐標,利用待定系數(shù)法即可求出y1、y2關于x的函數(shù)關系式,二者做差后利用二次函數(shù)的性質(zhì)即可解決最值問題.
(1)當x=6時,y1=3,y2=1.
∵y1﹣y2=3﹣1=2,∴6月份出售這種蔬菜每千克的收益是2元.
(2)設y1=mx+n,y2=a(x﹣6)2+1.
將(3,5)、(6,3)代入y1=mx+n,得,解得:,∴y1x+7;
將(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a,∴y2(x﹣6)2+1x2﹣4x+13,∴P=y1﹣y2x+7﹣(x2﹣4x+13)x2x﹣6(x﹣5)2.
∵0,∴當x=5時,P取最大值,最大值為.
答:5月份出售這種蔬菜,每千克的收益最大,最大利潤是元/千克.
科目:初中數(shù)學 來源: 題型:
【題目】)如圖,Rt△ABC中,C= 90o,以斜邊AB為邊向外作正方形 ABDE,且正方形對角線交于點D,連接OC,已知AC=5,OC=6,則另一直角邊BC的長為 ▲ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(a,1)、B(﹣1,b)都在函數(shù)(x<0)的圖象上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點A在x軸負半軸上,頂點B在x軸正半軸上.若拋物線p=ax2-10ax+8(a>0)經(jīng)過點C、D,則點B的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要建一個面積為150平方米的長方形養(yǎng)雞場,為了節(jié)約材料,雞場一邊靠著原有的一堵墻,墻長為18米,另三邊用籬笆圍成,如籬笆長度為35米,且要求用完。求雞場的長與寬各是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;
(3)當線段AM最短時,求重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.
(1)求證:AE平分∠BAC;
(2)若AD=2,EC= ,∠BAC=60°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,點A是x軸負半軸上一個定點,點P是函數(shù)上一個動點,軸于點B,當點P的橫坐標逐漸增大時,四邊形OAPB的面積將會
A. 先增后減 B. 先減后增 C. 逐漸減小 D. 逐漸增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com