【題目】某校為了解學(xué)生對(duì)籃球、足球、排球、羽毛球、乒乓球這五種球類運(yùn)動(dòng)的喜愛(ài)情況,隨機(jī)抽取一部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,統(tǒng)計(jì)整理并繪制了以下兩幅不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)共抽取   名學(xué)生進(jìn)行問(wèn)卷調(diào)查;

(2)補(bǔ)全條形統(tǒng)計(jì)圖,求出扇形統(tǒng)計(jì)圖中足球所對(duì)應(yīng)的圓心角的度數(shù);

(3)該校共有3000名學(xué)生,請(qǐng)估計(jì)全校學(xué)生喜歡足球運(yùn)動(dòng)的人數(shù).

(4)甲乙兩名學(xué)生各選一項(xiàng)球類運(yùn)動(dòng),請(qǐng)求出甲乙兩人選同一項(xiàng)球類運(yùn)動(dòng)的概率.

【答案】(1)200;(2)詳見解析;(3)750;(4)

【解析】

(1)用排球的人數(shù)÷排球所占的百分比,即可求出抽取學(xué)生的人數(shù);

(2)足球人數(shù)=學(xué)生總?cè)藬?shù)-籃球的人數(shù)-排球人數(shù)-羽毛球人數(shù)-乒乓球人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖;

(3)計(jì)算足球的百分比,根據(jù)樣本估計(jì)總體,即可解答;

(4)利用概率公式計(jì)算即可.

(1)30÷15%=200(人).

答:共抽取200名學(xué)生進(jìn)行問(wèn)卷調(diào)查;

故答案為200.

(2)足球的人數(shù)為:200﹣60﹣30﹣24﹣36=50(人),足球球所對(duì)應(yīng)的圓心角的度數(shù)為360°×0.25=90°.

如圖所示:

(3)3000×0.25=750(人).

答:全校學(xué)生喜歡足球運(yùn)動(dòng)的人數(shù)為750人.

(4)畫樹狀圖為:(用A、B、C、D、E分別表示籃球、足球、排球、羽毛球、乒乓球的五張卡片)

共有20種等可能的結(jié)果數(shù),其中小雷和小正兩人中有且只有一人選中自己喜歡的項(xiàng)目的結(jié)果數(shù)為4,

所以小雷和小正兩人中有且只有一人選中自己喜歡的項(xiàng)目的概率PA=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時(shí)出發(fā),甲車以60千米/時(shí)的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達(dá)目的地后停止.甲、乙兩車相距的路程(千米)與甲車的行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系如圖所示.

1)乙車的速度為   千米/時(shí),   ,   

2)求甲、乙兩車相遇后之間的函數(shù)關(guān)系式.

3)當(dāng)甲車到達(dá)距70千米處時(shí),求甲、乙兩車之間的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、點(diǎn)B、點(diǎn)C均落在格點(diǎn)上.

(I)計(jì)算△ABC的邊AC的長(zhǎng)為_____

(II)點(diǎn)P、Q分別為邊AB、AC上的動(dòng)點(diǎn),連接PQ、QB.當(dāng)PQ+QB取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出線段PQ、QB,并簡(jiǎn)要說(shuō)明點(diǎn)P、Q的位置是如何找到的_____(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)軸上,點(diǎn)坐標(biāo)為。

1)求點(diǎn)軸的距離;

2)連接,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)在(2)的條件下,猜想線段和線段的數(shù)量關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知BD平分∠ABF,且交AE于點(diǎn)D.

(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)設(shè)AP交BD于點(diǎn)O,交BF于點(diǎn)C,連接CD,當(dāng)AC⊥BD時(shí),求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市今年中考理化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定每位考生必須在三個(gè)物理實(shí)驗(yàn)(用紙簽A、B、C表示)和三個(gè)化學(xué)試驗(yàn)(用紙簽D、E、F表示)中各抽取一個(gè)實(shí)驗(yàn)操作進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).用列表或畫樹狀圖的方法求小剛抽到物理實(shí)驗(yàn)B和化學(xué)實(shí)驗(yàn)F的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)等邊三角形時(shí)發(fā)現(xiàn)了直角三角形的一個(gè)性質(zhì):直角三角形中,角所對(duì)的直角邊等于斜邊的一半。小明同學(xué)對(duì)以上結(jié)論作了進(jìn)一步探究.如圖1,在中,,則:.

探究結(jié)論:(1)如圖1,邊上的中線,易得結(jié)論:________三角形.

2)如圖2,在中,邊上的中線,點(diǎn)是邊上任意一點(diǎn),連接,在邊上方作等邊,連接.試探究線段之間的數(shù)量關(guān)系,寫出你的猜想加以證明.

拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)軸正半軸上的一動(dòng)點(diǎn),以為邊作等邊,當(dāng)點(diǎn)在第一象內(nèi),且時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?

(3)過(guò)點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是求作AOB的角平分線的尺規(guī)作圖過(guò)程.

已知:如圖,鈍角AOB.求作:AOB的角平分線.

作法:

OAOB上,分別截取OD、OE,使ODOE

分別以D、E為圓心,大于的長(zhǎng)為半徑作弧,AOB內(nèi),兩弧交于點(diǎn)C;

作射線OC.

所以射線OC就是所求作的AOB的角平分線.

在該作圖中蘊(yùn)含著幾何的證明過(guò)程:

可得:ODOE

可得:_________________

可知:OCOC

_______________(依據(jù):________________________

可得COD=∠COE(全等三角形對(duì)應(yīng)角相等)

OC就是所求作的AOB的角平分線.

查看答案和解析>>

同步練習(xí)冊(cè)答案