【題目】如圖,利用一個直角墻角修建一個梯形儲料場ABCD,其中∠C120°.若新建墻BCCD總長為12m,則該梯形儲料場ABCD的最大面積是(

A.18m2B.m2C.m2D.m2

【答案】C

【解析】

過點CCEABE,則四邊形ADCE為矩形,CD=AE=x,∠DCE=CEB=90°,則

BCE=BCD-DCE=30°,BC=12-x,由直角三角形的,性質(zhì)得出得出,又梯形面積公式求出梯形ABCD的面積Sx之間的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)求解.

解:如圖,過點CCEABE,

則四邊形ADCE為矩形,CD=AE=x,∠DCE=CEB=90°,則∠BCE=BCD-DCE=30°,BC=12-x,

RtCBE中,∵∠CEB=90°,

∴梯形ABCD面積

∴當x=4時,S最大=24

CD長為4 m時,使梯形儲料場ABCD的面積最大為24 m2;

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格中的每個小正方形的邊長是1,每個小正方形的頂點叫做格點。已知,的頂點都在格點上,,,若在邊上上以某個格點為端點畫出長是的線段,使線段另一端點恰好落在邊上,且線段與點構(gòu)成的三角形與相似,請你在兩個圖中畫出線段(不必說明理由)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩塊大小相同的含30°角的直角三角板(∠BAC=∠BAC30°)按圖方式放置,固定三角板ABC,然后將三角板ABC繞直角頂點C順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°)至圖所示的位置,ABAC交于點E,ACAB′交于點F,ABAB′相交于點O

1)當旋轉(zhuǎn)角為   度時,CFCB′;

2)在上述條件下,ABAB′垂直嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,邊上的高.

問題發(fā)現(xiàn):

1)如圖1,若,點是線段上一個動點(點不與點,重合)連接,將線段繞點逆時針旋轉(zhuǎn),得到線段,連接,我們會發(fā)現(xiàn)、、之間的數(shù)量關(guān)系是,請你證明這個結(jié)論;

提出猜想:

2)如圖2,若,點是線段上一個動點(點不與點,重合)連接,將線段繞點逆時針旋轉(zhuǎn),得到線段,連接,猜想線段、、之間的數(shù)量關(guān)系是_______

拓廣探索:

3)若,為常數(shù)),點是線段上一個動點(點不與點重合),連接,將線段繞點逆時針旋轉(zhuǎn),得到線段,連接.請你利用上述條件,根據(jù)前面的解答過程得出類似的猜想,并在圖3中畫出圖形,標明字母,不必解答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題(不寫作法,保留作圖痕跡)

()如圖1,在四邊形ABCD中,CDABAB=2CD,BD=AD,EBD中點,請僅用無刻度的直尺在圖1中,畫出△ABDAB邊上的高線DF

()如圖2,已知等腰△ABC,∠ACB=150°

(1)僅用沒有無刻度的直尺和圓規(guī)一個ABD,使∠ADB=75°,∠ABD=60°.

(2)在⑴的前提下,連接CD,若AB=2+2.則CD的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸相交于兩點(點在點的左側(cè)),與軸相交于點為拋物線上一點,橫坐標為,且

⑴求此拋物線的解析式;

⑵當點位于軸下方時,求面積的最大值;

⑶設(shè)此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為

①求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;

②當時,直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,菱形的周長為,對角線,直線從點出發(fā),以1的速度沿向右運動,直到過點為止.在運動過程中,直線始終垂直于,若平移過程中直線掃過的面積為),直線的運動時間為,則下列最能反映之間函數(shù)關(guān)系的圖象是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°后,得到線段AB,則點B的坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD6,點EAD的中點,點P為線段AB上一個動點,連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當△ECF為直角三角形時,AP的長為______.

查看答案和解析>>

同步練習冊答案