【題目】為了了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學生人數(shù)為 人,參加球類活動的人數(shù)的百分比為 ;
(2)該校學生共600人,則參加棋類活動的人數(shù)約為 ;
(3)該班參加舞蹈類活動的四位同學中,有一位男生(用E表示)和3位女生(分別用F,G,H表示),先準備從中選取兩名同學組成舞伴,請用列表或畫樹狀圖得方法求恰好選中一男一女的概率.
【答案】(1)7,30%;(2)105;(3)
【解析】
(1)先根據(jù)繪畫類人數(shù)及其百分比求得總人數(shù),繼而可得答案;
(2)總人數(shù)乘以棋類活動的百分比可得;
(3)利用樹狀圖法列舉出所有可能的結果,然后利用概率公式即可求解.
(1)本次調查的總人數(shù)為10÷25%=40(人),
∴參加音樂類活動的學生人數(shù)為40×17.5%=7人,參加球類活動的人數(shù)的百分比為×100%=30%,
故答案為:7、30%;
(2)該校學生共600人,則參加棋類活動的人數(shù)約為600×=105,
故答案為:105;
(3)畫樹狀圖如下:
共有12種情況,選中一男一女的有6種,
則P(選中一男一女)=.
科目:初中數(shù)學 來源: 題型:
【題目】2019年4月23日是第二十四個“世界讀書日“.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:
(1)求本次比賽獲獎的總人數(shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“二等獎”所對應扇形的圓心角度數(shù);
(3)學校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加“世界讀書日”宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2﹣2x+c與直線y=﹣x+3分別交于x軸、y軸上的B、C兩點,拋物線的頂點為點D,聯(lián)結CD交x軸于點E.
(1)求拋物線的解析式以及點D的坐標;
(2)求tan∠BCD;
(3)點P在直線BC上,若∠PEB=∠BCD,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把有一條邊是另一條邊的2倍的梯形叫做“倍邊梯形”,在⊙O中,直徑AB=2,PQ是弦,若四邊形ABPQ是“倍邊梯形”,那么PQ的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,線段與軸平行,且,拋物線經(jīng)過點和,若線段以每秒2個單位長度的速度向下平移,設平移的時間為(秒).若拋物線與線段有公共點,則的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,BD=2AD,E、F、G分別是OC、OD、AB的中點,下列結論:①BE⊥AC;②四邊形BEFG是平行四邊形;③△EFG≌△GBE;④EG=EF,其中正確的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我國新型冠狀病毒防控形勢好轉的態(tài)勢下,各行各業(yè)復工復產(chǎn)所需的“消殺防護”設備成為急需物品.某醫(yī)藥超市庫存的甲,乙兩種型號“消殺防護”套裝共套全部售完,售后統(tǒng)計甲型號套裝每套的利潤為元,乙型號套裝每套的利潤為元,兩種型號“消殺防護"套裝售完后的總利潤為元
請計算本次銷售中甲、乙兩種型號“消殺防護”套裝各銷售了多少套.
由于企業(yè)迫切需求,該醫(yī)藥超市決定再次購進套甲、乙兩種型號的“消殺防護”套裝,商場規(guī)定甲型號套裝的采購數(shù)量不得超過乙型號的倍,請你通過計算說明如何采購才能讓第二次銷售獲得最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P是拋物線上的動點,且滿足S△PAO=2S△PCO,求出P點的坐標;
(3)連接BC,點E是x軸一動點,點F是拋物線上一動點,若以B、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出點F的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com