【題目】如圖,已知內(nèi)接于⊙,直徑于點,連接,過點,垂足為.過點作⊙的切線,交的延長線于點

(1),求的度數(shù);

(2),求證:;

(3)(2)的條件下,連接,設(shè)的面積為,的面積為,若,求的值

【答案】150°;(2)詳見解析;(3

【解析】

1)連接BD,如圖,利用切線性質(zhì)和圓周角定理得到∠ADG=ABD=90°,再利用等角的余角相等得到∠ADB=G=50°,然后根據(jù)圓周角定理得到∠ACB的度數(shù);

2)連接CD,如圖,利用等腰三角形的性質(zhì)得到∠ABE=AEB,∠ODC=OCD,再利用圓周角定理得到∠ABC=ADC,然后根據(jù)三角形內(nèi)角和可判斷∠BAD=DOC;

3)先證明△ABD∽△OFC得到,設(shè) 則利用三角形面積公式得到則可設(shè)OF=4k,則OA=5k,利用勾股定理計算出CF,然后根據(jù)正切的定義求解.

1)解:連接BD,如圖,

DG為切線,

ADDG, ∴∠ADG=90°,

AD為直徑, ∴∠ABD=90°,

GDB+G=90°,∠ADB+GDB=90°,

∴∠ADB=G=50°,

∴∠ACB=ADB=50°;

2)證明:連接CD,如圖,

AB=AE, ∴∠ABE=AEB,

OD=OC, ∴∠ODC=OCD,

而∠ABC=ADC ∴∠ABE=AEB=ODC=OCD,

∴∠BAD=FOC;

3)解:∵∠BAD=FOC,∠ABD=OFC

∴△ABD∽△OFC,

設(shè)

∴設(shè)OF=4k,則OA=5k,

RtOCF中,OC=5k, CF=

tanCAF=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明同學(xué)設(shè)計的過直線外一點作已知直線的平行線的尺規(guī)作圖過程.

已知:如圖,直線和直線外一點

求作:直線,使直線直線

作法:如圖,

①在直線上任取一點,作射線;

②以為圓心,為半徑作弧,交直線于點,連接

③以為圓心,長為半徑作弧,交射線于點;分別以為圓心,大于長為半徑作弧,在的右側(cè)兩弧交于點;

④作直線

所以直線就是所求作的直線.

根據(jù)上述作圖過程,回答問題:

1)用直尺和圓規(guī),補全圖中的圖形;

2)完成下面的證明:

證明:由作圖可知平分

,

(_______________________________)(填依據(jù)1)

,∴直線直線(______________________)(填依據(jù)2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點,與軸交于兩點,為頂點,為拋物線上一動點(與點不重合)

求該拋物線的解析式;

當(dāng)點在直線的下方運動時,求的面積的最大值;

該拋物線上是否存在點,使?若存在,求出所有點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)殖場計劃今年養(yǎng)殖無公害標(biāo)準(zhǔn)化龍蝦和鯉魚,由于受養(yǎng)殖水面的制約,這兩個品種的苗種的總投放量只有50噸.根據(jù)經(jīng)驗測算,這兩個品種的種苗每投放一噸的先期投資、養(yǎng)殖期間的投資以及產(chǎn)值如下表:(單位:千元/)

品種

先期投資

養(yǎng)殖期間投資

產(chǎn)值

鯉魚

9

3

30

龍蝦

4

10

20

養(yǎng)殖場受經(jīng)濟條件的影響,先期投資不超過360千元,養(yǎng)殖期間的投資不超過290千元.設(shè)鯉魚種苗的投放量為x噸.

(1)x的取值范圍;

(2)設(shè)這兩個品種產(chǎn)出后的總產(chǎn)值為y(千元),試寫出yx之間的函數(shù)關(guān)系式,并求出當(dāng)x等于多少時,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離y()與時間t(分鐘)之間的函數(shù)關(guān)系如圖所示.乙回到學(xué)校用了______分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20203停課不停學(xué)期間,某校采用簡單隨機抽樣的方式調(diào)查本校學(xué)生參加第一天線上學(xué)習(xí)的時長,將收集到的數(shù)據(jù)制成不完整的頻數(shù)分布表和扇形圖,如下所示:

組別

學(xué)習(xí)時長(分鐘)

頻數(shù)(人)

1

x≤40

3

2

40x≤60

6

3

60x≤80

m

4

80x≤100

18

5

100x≤120

14

1)求mn的值;

2)學(xué)校有學(xué)生2400人,學(xué)校決定安排老師給““線上學(xué)習(xí)時長x≤60分鐘范圍內(nèi)的學(xué)生打電話了解情況,請你根據(jù)樣本估計學(xué)校學(xué)生線上學(xué)習(xí)時長x≤60分鐘范圍內(nèi)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織了2000名學(xué)生參加“愛我中華”知識競賽活動,為了了解本次知識競賽的成績分布情況,從中抽取了部分學(xué)生的得分進行統(tǒng)計:

成績(分)

頻數(shù)

頻率

20

16

0.08

0.15

請你根據(jù)以上的信息,回答下列問題:

1 ,

2)在扇形統(tǒng)計圖中,“成績滿足”對應(yīng)扇形的圓心角的度數(shù)是 ;

3)若將得分轉(zhuǎn)化為等級,規(guī)定:評為,評為評為,評為.這次全校參加競賽的學(xué)生約有 人參賽成績被評為“”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形中,對角線平分.為了研究圖中線段之間的數(shù)量關(guān)系,設(shè)

1)由題意可得,(在括號內(nèi)填入圖1中相應(yīng)的線段)y關(guān)于x的函數(shù)表達式為________

2)如圖2,在平面直角坐標(biāo)系中,根據(jù)(1)中y關(guān)于x的函數(shù)表達式描出了其圖象上的一部分點,請依據(jù)描出的點畫出該函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:

①寫出該函數(shù)的一條性質(zhì):__________________________;

②估計的最小值為__________.(結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校對八年級班的體育成績做了模擬測評,將各個班的滿分人數(shù)繪制成兩幅不完整的統(tǒng)計圖(如圖):

根據(jù)圖中信息解答以下問題:

1)扇形統(tǒng)計圖中,所在扇形的圓心角是 度,并補全條形統(tǒng)計圖;

2)班滿分同學(xué)中有名(其中男)的跳遠(yuǎn)動作十分標(biāo)準(zhǔn),班班主任準(zhǔn)備從這名同學(xué)中任選名給本班同學(xué)示范,請利用畫樹狀圖或列表的方法求出選出名同學(xué)恰好是一男一女的概率.

查看答案和解析>>

同步練習(xí)冊答案